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Memory is typically thought of as enabling reminiscence about
past experiences. However, memory also informs and guides pro-
cessing of future experiences. These two functions of memory
are often at odds: Remembering specific experiences from the
past requires storing idiosyncratic properties that define partic-
ular moments in space and time, but by definition such properties
will not be shared with similar situations in the future and thus
may not be applicable to future situations. We discovered that,
when faced with this conflict, the brain prioritizes prediction
over encoding. Behavioral tests of recognition and source recall
showed that items allowing for prediction of what will appear
next based on learned regularities were less likely to be encoded
into memory. Brain imaging revealed that the hippocampus was
responsible for this interference between statistical learning and
episodic memory. The more that the hippocampus predicted the
category of an upcoming item, the worse the current item was
encoded. This competition may serve an adaptive purpose, focus-
ing encoding on experiences for which we do not yet have a
predictive model.

episodic memory | statistical learning | predictive coding |
hippocampus | multivariate fMRI

Human memory contains two fundamentally different kinds
of information—episodic and statistical. Episodic memory

refers to the encoding of specific details of individual expe-
riences (e.g., what happened on one’s last birthday), whereas
statistical learning refers to extracting what is common across
multiple experiences (e.g., what tends to happen at birthday par-
ties). Episodic memory allows for vivid recollection and nostalgia
about past events, whereas statistical learning leads to more gen-
eralized knowledge that affords predictions about new situations.
Episodic memory occurs rapidly and stores even related expe-
riences distinctly to minimize interference, whereas statistical
learning occurs more slowly and overlays memories to represent
their common elements or regularities. Given these behavioral
and computational differences, theories of memory have argued
that these two kinds of information must be processed serially
and stored separately in the brain (1, 2): Episodic memories are
formed first in the hippocampus and these memories in turn pro-
vide the input for later statistical learning in the neocortex as a
result of consolidation (3–5).

Here we reveal a relationship between episodic memory and
statistical learning in the reverse direction, whereby learned reg-
ularities determine which memories are formed in the first place.
Specifically, we examine whether the ability to predict what
will appear next—a signature of statistical learning—reduces
encoding of the current experience into episodic memory. This
hypothesis depends on two theoretical commitments: first, that
the adaptive function of memory is to guide future behavior
by generating expectations based on prior experience (6) and,
second, that memory resources are limited, because of atten-
tional bottlenecks that constrain encoding (7) and/or because
new encoding interferes with the storage or retrieval of exist-
ing memories (8). Accordingly, in allocating memory resources,
we propose that it is less important to encode an ongoing
experience when it already generates strong expectations about

future states of the world. When the current experience affords
no such expectations, however, encoding it into memory pro-
vides the opportunity to extract new, unknown regularities
that enable more accurate predictions in subsequent encoun-
ters. After demonstrating this role for statistical learning in
episodic memory behaviorally, we identify an underlying mech-
anism in the brain using functional MRI (fMRI), based on
the recent discovery that both processes depend upon the hip-
pocampus and thus compete to determine its representations
and output (9).

Results
Experiment 1a. We exposed human participants to a stream of
pictures and later tested their memory (Fig. 1A). The pictures
consisted of outdoor scenes from 12 different categories (e.g.,
beach, mountain, field). Three of the categories (type A, predic-
tive) were each reliably followed by one of three other categories
(type B, predictable); the remaining six categories (type X,
nonpredictive, nonpredictable) were randomly inserted into the
stream. That is, every time participants saw a picture from an A
category, they always saw a picture from a specific B category
next; however, when a picture from an X category appeared,
it was variably preceded and followed by pictures from several
other categories (Fig. 1B). Participants were not informed about
these predictive A→B category relationships and learned them
incidentally through exposure (10). Although each category was
shown several times, every individual picture in the stream was
a novel exemplar from the category and shown only once. For
example, whenever a picture from the beach category appeared,
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Fig. 1. Behavioral experiments. (A) Task design. Participants viewed a continuous stream of scene pictures, during which they made a judgment of
whether or not there was a manmade object in the scene. (B) Example scene category pairings for one participant. Three of 12 categories were assigned
to condition A; each was reliably followed by 1 of 3 different categories assigned to condition B (illustrated by arrows). The remaining 6 categories
were assigned to condition X and were not consistently preceded or followed by any particular category. (C) (Left) Surprise recognition memory test.
(Center) Proportion of old exemplars recognized (hit rate) as a function of condition (higher hit rate is better memory) for experiment 1a. (Right)
Hit rate for experiment 1b. (D) (Left) Temporal source memory test. (Right) Absolute difference between reported and actual time of encoding as a
function of condition (higher deviation is worse memory). Error bars reflect within-participant SEM. ∗P < 0.05, ∗∗P < 0.01. Image credits: (A, Left to
Right) Pixabay/minnick36; GoodFreePhotos/Ingo Joseph; Pixabay/birgl; Wikimedia Commons/Yinan Chen; Pxfuel; Pixabay/marykay2330; Wikimedia Com-
mons/Scanpix, Scandlines, which is licensed under CC BY 3.0; and PublicDomainPictures/Petr Kratochvil. (B, Top row, Left to Right) Pixabay/AnnaliseArt;
Wikimedia Commons/Bureau of Land Management, which is licensed under CC BY 2.0; and Public Domain Vectors; (Second row) FreeSVG/OpenClipart; Pub-
lic Domain Vectors; and Public Domain Vectors; (Third row) Pixabay/OpenClipart-Vectors; FreeSVG/OpenClipart; and Public Domain Vectors; (Bottom row)
Pixabay/AnnaliseArt; Public Domain Vectors; and WebStockReview, which is licensed under CC BY 3.0. (C and D) Pixabay/minnick36.

it was a new beach that they had not seen before. After the
stream, we tested memory for these individual pictures among
new exemplars from the same categories. The key hypothesis was
that exemplars from predictive categories would be remembered
worse than exemplars from nonpredictive categories.
Encoding phase. While viewing the stream, 30 participants per-
formed a cover task in which they judged whether or not there
was a manmade object in the scene. Participants performed
quite well on this task (mean accuracy = 0.91). This perfor-
mance level was reliably above chance (0.5; t(29) = 42.38, P <
0.001). Assessing response times over the course of the exper-
iment, we found a reliable main effect of experiment quartile
(F(3, 87) = 8.30, P < 0.001), a marginal main effect of condi-
tion (F(2, 58) = 3.09, P = 0.053), and a marginal interaction
between condition and quartile (F(6, 174) = 2.15, P = 0.050).
This interaction reflected growing facilitation for the predictable
B category, with marginally faster response times by the fourth
quartile relative to the X (t(29) = 2.02, P = 0.053) and A

(t(29) = 1.99, P = 0.056) categories, whose appearance could
not be predicted (11, 12).
Test phase. To evaluate overall episodic memory performance,
we calculated A′ for each participant as a nonparametric mea-
sure of sensitivity. All participants had memory performance
numerically above the chance level of 0.5 (mean A′ = 0.72,
t(29) = 20.02, P < 0.001; mean hit rate = 0.50; mean false alarm
rate = 0.23). We did not find a reliable main effect of condition
on A′ (F(2, 58) = 2.37, P = 0.10). However, A′ takes into account
both the hit rate and the false alarm rate. Given our hypothesis
of worse encoding for the old exemplars from the predictive A
categories, we expected that hit rate would be a more sensitive
measure.

Indeed, there was a main effect of condition on hit rate (F(2,
58) = 4.75, P = 0.012), with a lower hit rate for pictures from
the A categories relative to both B (t(29) = −2.79, P = 0.0092)
and X (t(29) = −2.33, P = 0.027) categories (Fig. 1C, Center).
There was no difference in hit rate between B and X categories
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(t(29) = 1.19, P = 0.24), showing that the memory deficit is selec-
tive to whether a category was predictive (A vs. X), not whether
it was predictable (B vs. X). As hypothesized, this memory deficit
reflected a failure to encode specific A exemplars rather than a
generic impairment for A categories (13, 14), as the false alarm
rate for new exemplars from each category at test did not differ
by condition (F(2, 58) = 0.29, P = 0.75). Given these findings,
analyses in subsequent experiments consider hit rate and false
alarm rate separately by condition.

If prediction from statistical learning interferes with episodic
memory encoding, we might expect the memory deficit for pre-
dictive A items to increase as learning progresses. We thus
analyzed hit rate across conditions as a function of the encod-
ing phase quartile in which a picture was presented (SI Appendix,
Fig. S1A). We found main effects of both quartile (F(3, 87) =
3.49, P = 0.019) and condition (F(2, 58) = 4.75, P = 0.012), but
no interaction (F(6, 174) = 0.74, P = 0.62). Focusing later within
the encoding phase, we found reliable main effects of condition
in the third (F(2, 58) = 4.09, P = 0.022) and fourth quartiles
(F(2, 58) = 4.12, P = 0.021). In the third quartile, memory for A
was reliably worse than for B (t(29) = −2.73, P = 0.011), but not
X (t(29) = −0.40, P = 0.69). In the fourth quartile, memory for
A was reliably worse than for both B (t(29) = −2.55, P = 0.016)
and X (t(29) = −2.48, P = 0.019). In contrast, we did not find
any reliable main effects or pairwise differences between condi-
tions in the first or second quartiles. These results are consistent
with the deficit for predictive A items emerging over time during
statistical learning.

Experiment 1b. Experiment 1a suggested that prediction from
statistical learning can impair episodic memory. Most critically,
A items that were predictive of an upcoming B item were
remembered worse than nonpredictive X items. To establish the
robustness of these results, here we performed a preregistered
and highly powered online replication study.
Encoding phase. A group of 64 participants on the online data
collection platform Prolific participated in the same encoding
task as experiment 1a. Participants performed quite well on the
cover task (mean accuracy = 0.92; relative to 0.5 chance: t(63) =
67.32, P < 0.001). Examining response times over the course of
learning, we again found a reliable main effect of quartile (F(3,
189) = 15.13, P < 0.001), but no main effect of condition (F(2,
126) = 0.018, P = 0.98) or an interaction between condition and
quartile (F(6, 378) = 0.73, P = 0.63).
Test phase. To examine overall memory performance we again
measured A′ for each participant and verified that memory per-
formance at the group level was above chance (mean A′ = 0.69,
t(63) = 19.77, P < 0.001; mean hit rate = 0.57; mean false alarm
rate = 0.35).

As in experiment 1a, we did not find a reliable main effect of
condition on A′ (F(2, 126) = 1.59, P = 0.21) or false alarm rate
(F(2, 126) = 0.060, P = 0.94). However, we did find a marginal
main effect of condition on hit rate (F(2, 126) = 2.76, P = 0.067;
Fig. 1C, Right). Critically, we robustly replicated the key pairwise
difference in hit rate between A and X categories (t(63) = −3.03,
P = 0.0036), the comparison that isolates the effect of predictive-
ness. Unlike experiment 1a, the difference in hit rate between
A and B categories was not reliable (t(63) = −0.68, P = 0.50),
although memory for A was still numerically lower than for B.
The B and X categories again did not differ in hit rate (t(63) =
−1.46, P = 0.15).

We again considered whether the pattern of results changed
over the course of learning (SI Appendix, Fig. S1B). Assessing hit
rate as a function of encoding quartile, we found a reliable main
effect of quartile (F(3, 189) = 4.95, P = 0.0025), a marginal main
effect of condition (F(2, 126) = 2.76, P = 0.067), and a marginal
interaction (F(6, 378) = 1.79, P = 0.099). The main effect of con-
dition was reliable only within the fourth quartile (F(2, 126) =

5.60, P = 0.0047), with memory for A reliably worse than for
both B (t(63) = −2.20, P = 0.031) and X (t(63) = −3.67, P <
0.001).

Experiment 2. Together, experiments 1a and 1b demonstrated
that episodic encoding is worse for predictive vs. nonpredic-
tive pictures using a surprise recognition memory test. We
interpret this result as evidence of competition between predic-
tion and encoding in the hippocampus. However, recognition
tests do not definitively probe aspects of episodic memory that
specifically depend on the hippocampus. Participants could have
relied upon a generic sense of familiarity with the pictures,
which can be supported by cortical areas (15–17). We thus
designed experiment 2 with a different, recall-based memory
test. After encoding the same kind of picture stream, partici-
pants were unexpectedly asked at test to indicate at what exact
time (on the clock) they had seen each picture in the stream.
As before, encoding of the time was incidental as they were
not informed in advance that they would be tested. This kind
of precise temporal source memory requires the retrieval of
details about the context in which each picture was encoded, a
hallmark function of episodic memory (e.g., remembering who
arrived first at a birthday party) that critically depends upon the
hippocampus (18–20).
Encoding phase. A group of 30 new participants performed quite
well on the same manmade cover task as experiment 1a (mean
accuracy = 0.93; relative to 0.5 chance: t(29) = 44.07, P < 0.001).
There was again a main effect of experiment quartile on response
times (F(3, 87) = 7.82, P < 0.001), but no main effect of con-
dition (F(2, 58) = 0.22, P = 0.80) or an interaction between
condition and quartile (F(6, 174) = 0.69, P = 0.65).
Test phase. In the memory test, participants were presented with
a picture and first asked to indicate whether they thought it was
old or new, i.e., whether it was presented during the encoding
stream. If they indicated that the picture was old, they were then
asked to recall when during the stream they had seen the picture.
We included the initial old/new recognition judgment because
we felt that it would be awkward to ask participants to report
the time of a picture they did not remember seeing previously.
Nevertheless, our primary hypothesis was that precision of tem-
poral source memory recall would be lower for exemplars from
predictive categories, resulting in greater deviation or error for
A compared to X categories.

In terms of overall recognition memory from the initial
old/new judgments, all participants had an A′ numerically above
the chance level of 0.5 (mean A′ = 0.75, t(29) = 23.31, P < 0.001;
mean hit rate = 0.38; mean false alarm rate = 0.11). Neither
the hit rate (F(2, 58) = 0.74, P = 0.48) nor the false alarm rate
(F(2, 58) = 0.33, P = 0.72) differed by condition. The lack of a
hit rate effect differed from experiment 1, but we suspect that
this may be an artifact of introducing the source memory task.
Specifically, participants in experiment 2 knew that responding
“old” would prompt a difficult follow-up question about their
temporal source memory. As a result, they may have strategi-
cally adopted a more conservative criterion to avoid the source
judgment unless they had a strong memory with high confidence.
Consistent with this interpretation, participants were less likely
to respond old in general in experiment 2 (mean proportion old
responses = 0.33) than in experiment 1a (0.45; t(58) = 4.76, P <
0.001).

Regardless, our focus in this experiment was on temporal
source memory recall. We assessed overall source memory by
computing the average absolute deviation from the correct clock
time for all hits. Higher absolute deviation indicates lower preci-
sion in memory. The mean absolute deviation across participants
was 56.3 pictures, or 84.5 s. Twenty-six of the 30 participants had
a mean deviation numerically lower than chance (determined via
permutation test to be 63.8 pictures), and thus performance at

Sherman and Turk-Browne PNAS Latest Articles | 3 of 11

D
ow

nl
oa

de
d 

at
 U

C
L 

Li
br

ar
y 

S
er

vi
ce

s 
on

 A
ug

us
t 2

8,
 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013291117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013291117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013291117/-/DCSupplemental


the group level was reliably above chance (t(29) = −7.04, P <
0.001). As hypothesized, there was a main effect of condition on
absolute deviation (Fig. 1D; F(2, 58) = 3.17, P = 0.049). Pictures
from the A categories had greater deviation (less precision) than
those from the X categories (t(29) = 2.26, P = 0.031), which
differed only in that they were not predictive of the upcoming
category. Precision was also lower for A relative to B categories,
but this difference did not reach significance (t(29) = 1.45, P =
0.16); B and X categories also did not reliably differ from each
other (t(29) = 1.23, P = 0.23).

Examining how memory changed over the course of learning,
as we did in the preceding experiments, is difficult here because
of the use of a temporal source memory measure. Namely,
because the range of possible deviations changes over time (i.e.,
by chance, pictures from the middle of encoding would have
lower average deviation than from the beginning and end), exam-
ining how source memory changes over time is confounded.
Moreover, because of the lower hit rate in this experiment, there
are fewer responses per quartile and in fact three participants did
not have any responses in at least one quartile. We performed the
analysis nevertheless, for completeness, and found a main effect
of quartile (F(3, 78) = 41.9, P < 0.001), a marginal main effect
of condition (F(2, 52) = 2.73, P = 0.075), but no interaction
(F(6, 156) = 1.5, P = 0.18). Follow-up tests did not reveal any
reliable effects within individual quartiles.

Experiment 3 (fMRI). Across experiments 1a, 1b, and 2, we found
robust and consistent evidence that memory for predictive A
items is reduced relative to that for the nonpredictive, nonpre-
dictable control X items. What explains this worse encoding of
predictive pictures? We propose that this results from the code-
pendence of statistical learning and episodic memory on the
hippocampus (9). Specifically, we hypothesize that the appear-
ance of a picture from an A category triggers the retrieval and
predictive representation of the corresponding B category in
the hippocampus. This in turn prevents the hippocampus from
encoding a new representation of the specific details of that
particular A picture, which would be needed for later recall
from episodic memory. To evaluate this hypothesis, experiment
3 employed high-resolution fMRI during the encoding phase to
link hippocampal prediction to subsequent memory.
Encoding phase behavior. A group of 36 new participants per-
formed the same manmade cover task as in experiments 1a,
1b, and 2. Performance across all runs (including the templat-
ing phases; Materials and Methods) remained quite high (mean
accuracy = 0.94; relative to 0.5 chance: t(35) = 18.75, P <
0.001). Response times were examined across thirds of the
encoding phase rather than quartiles because there were three
fMRI runs in this phase. As in experiment 1a, we found a
pattern of growing facilitation for the B categories. Although
there were no main effects of experiment third (F(2, 68) =
0.44, P = 0.65) or condition (F(2, 68) = 1.24, P = 0.29) or
an interaction (F(4, 136) = 1.17, P = 0.33), response times in
the third run were reliably faster for B categories relative to X
categories (t(34) = 2.23, P = 0.033); the difference for B rela-
tive to A categories was in the same direction but not reliable
(t(34) = 1.39, P = 0.17).
Test phase behavior. In experiment 3, we returned to the recog-
nition memory task from experiments 1a and 1b. All participants
exhibited A′ above the chance level of 0.5 except for one, who
was excluded from all other behavioral and fMRI analyses (all
participants: mean A′ = 0.68, t(36) = 14.63, P < 0.001; mean
hit rate = 0.61; mean false alarm rate = 0.39). Neither hit rate
(F(2, 70) = 2.23, P = 0.12) nor false alarm rate (F(2, 70) =
0.83, P = 0.44) differed by condition. Notably, this experiment
differed from the behavioral experiments in that participants
first completed a pretemplating phase (necessary for the fMRI
decoding analyses; Materials and Methods), in which they viewed

pictures from scene categories—that would subsequently be
paired in the encoding phase—in a random order. Exposure
to randomness prior to structure can impede statistical learn-
ing (21), which might help to explain the diminished memory
effect in this experiment (SI Appendix, Table S1). This is con-
sistent with weakened behavioral evidence of statistical learning
in other multivariate fMRI studies with templating phases (22).
More generally, it is not uncommon for behavioral effects to be
smaller in fMRI studies, including in prior statistical learning
studies (23). Although we did not observe an overall memory
effect at the group level, we followed precedent (24, 25) in
leveraging individual differences in learning to examine the rela-
tionship between memory behavior and neural measures across
participants.
Neural decoding of perceived information. The primary purpose
of the fMRI experiment was to measure neural prediction during
statistical learning in the encoding phase. We used a multivari-
ate pattern classification approach (26), which quantified neural
prediction of B categories during the encoding of A pictures.
Classification models were trained for each category based on
patterns of fMRI activity in a separate phase of the experiment
(pretemplating phase; Materials and Methods), during which par-
ticipants were shown pictures from all categories in a random
order. These classifiers were then tested during viewing of the
encoding stream containing category pairs, providing a continu-
ous readout of neural evidence for each category. We performed
this analysis based on fMRI activity patterns from the hippocam-
pus, our primary region of interest (ROI), as well as from control
ROIs in occipital and parahippocampal cortices. These control
ROIs were chosen because as visual areas we expected them to
be sensitive to the category of the current picture being viewed
but not necessarily to predict the upcoming B category given an
A picture.

To validate this approach, we first trained and tested classifiers
on the viewing of pictures from the A categories (“perception
of A”) and B categories (“perception of B”) (Fig. 2). A cate-
gories could be reliably decoded in the occipital (t(35) = 4.34,
P < 0.001) and parahippocampal (t(35) = 3.83, P < 0.001) cor-
tices, but not in the hippocampus (t(35) = −0.17, P = 0.87; main
effect of region: F(2, 70) = 7.47, P = 0.0012). In contrast, B cate-
gories could be reliably decoded in all three regions (occipital,
t(35) = 5.96, P < 0.001; parahippocampal, t(35) = 3.52, P =
0.0012; hippocampus, t(35) = 2.26, P = 0.030; main effect of
region, F(2, 70) = 6.73, P = 0.0021). Combining both perception
conditions, there was a reliable main effect of region (F(2, 70) =
14.89, P < 0.001), but no main effect of condition (F(1, 35) =
2.06, P = 0.16) and no interaction between region and condition
(F(2, 70) = 0.94, P = 0.39).

The hippocampus was unique in showing reliable decoding
during the perception of B but not perception of A. Although
this difference did not reach not significance (t(35) = −1.63,
P = 0.11), we sought to determine whether it reflected a dimin-
ished representation of A or an enhanced representation of B.
To establish a baseline, we trained and tested classifiers on the
viewing of pictures from the control X categories (SI Appendix,
Fig. S2). Mirroring the perception of A results, X categories
could be reliably decoded in the occipital (t(35) = 7.16, P <
0.001) and parahippocampal (t(35) = 2.47, P = 0.019) cortices,
but not in the hippocampus (t(35) = −0.49, P = 0.63; main effect
of region: F(2, 70) = 34.61, P < 0.001). Within the hippocampus,
we found a marginal main effect of condition (F(2, 70) = 2.58,
P = 0.083), with X lower than B (t(35) = −2.14, P = 0.039) but
not A (t(35) = −0.10, P = 0.92). These results suggest that pre-
diction may enhance the representation of predictable items in
the hippocampus.
Neural decoding of predicted information. We next tested the
hypothesis that the hippocampus predicts B categories during
viewing of the associated A categories. We trained classifiers
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Fig. 2. Category decoding in fMRI experiment. (Top) Classification accuracy in occipital cortex (OCC), parahippocampal cortex (PHC), and hippocampus
(HIPP) for each of the four combinations of training or testing on A or B categories. For every A/B combination and ROI, each dot is one participant and the
black line is the mean across participants. (Bottom) Regions of interest. HIPP and PHC were manually segmented in native participant space (transformed into
standard space for visualization); OCC was defined in standard space and transformed into native participant space. *P < 0.05, **P < 0.01, ***P < 0.001.

on pictures from each B category and tested on pictures from
the corresponding A category (“prediction of B”). Crucially,
the upcoming B category could be decoded during A in the
hippocampus (t(35) = 2.73, P = 0.0098), but this was not
possible in occipital (t(35) = 0.94, P = 0.35) or parahippocam-
pal (t(35) = 0.17, P = 0.87) cortices (main effect of region:
F(2, 70) = 1.76, P = 0.18). Control analyses ruled out poten-
tial confounds related to the timing of the fMRI signal: Training
classifiers on A and testing on B categories (“lingering of A”)
did not yield reliable decoding in the hippocampus (t(35) = 0.96,
P = 0.34) or occipital (t(35) = −0.38, P = 0.71) or parahip-
pocampal (t(35) = 1.57, P = 0.13) cortices (main effect of region:
F(2, 70) = 1.31, P = 0.28).

Although the hippocampus was the only region that exhibited
reliable decoding for prediction of B, there was no main effect
of region. To better understand differences between prediction
and perception across regions, we ran two targeted region ×
comparison ANOVAs. First, we compared prediction of B and
perception of B, which holds the classifier training data constant
(train on B categories, test on A and B trials, respectively). There
was no main effect of region (F(2, 70) = 2.02, P = 0.14), but
there was a reliable main effect of condition (F(1, 35) = 7.42,
P = 0.010) and a reliable interaction between region and con-
dition (F(2, 70) = 7.45, P = 0.0012). Second, we compared
perception of A and prediction of B, which holds the classifier

test data constant (train on A and B categories, respectively, test
on A trials). There was again no main effect of region (F(2, 70) =
1.23, P = 0.30), but there was a marginal main effect of condition
(F(1, 35) = 2.96, P = 0.094) and a reliable interaction between
region and condition (F(2, 70) = 9.85, P < 0.001). These results
suggest a dissociation whereby occipital and parahippocampal
cortices more strongly represent perceived information, whereas
the hippocampus represents predicted information.

Given that A categories could not be reliably decoded in the
hippocampus, we examined whether there was a trade-off in
the hippocampus between category evidence for A and B dur-
ing the viewing of A, with reliable prediction of B (train on B,
test on A) but not perception of A (train on A, test on A). We
assessed this by grouping participants based on whether they
exhibited above-chance or chance-level prediction of B decod-
ing and then comparing perception of A decoding between these
subgroups. We performed this categorical analysis rather than
a correlation to account for the fact that we expect variance at
or below chance to be noise. We found evidence for a trade-off:
Participants with above-chance classification for the upcoming B
category (vs. other B categories) had lower classification accu-
racy for the current A category (vs. other A categories) (t(34) =
2.23, P = 0.033). Importantly, we did not find the same rela-
tionship between prediction of B and perception of X (t(34) =
1.07, P = 0.29). This suggests that prediction can specifically
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Fig. 3. Brain–behavior relationship in fMRI experiment. Shown is Pearson
correlation between prediction of B classification accuracy in the hippocam-
pus during the encoding phase and the difference in hit rate between A
and X. The negative relationship indicates that greater hippocampal pre-
diction from statistical learning was associated with worse episodic memory
for the predictive item (see also SI Appendix, Fig. S5). Error shading indicates
bootstrapped 95% confidence intervals.

interfere with the ability of the hippocampus to represent the
current item.

The analyses above compared the average classification accu-
racy across participants against an assumed binary chance level
of 0.5. Chance classification can deviate from hypothetical levels
for a variety of reasons, so we also performed a nonparametric
analysis in which we compared classification accuracy against an
empirical null distribution estimated for each participant (Mate-
rials and Methods). This analysis yielded nearly identical results
(SI Appendix, Fig. S3).

Given that many regions of the brain have been implicated in
predictive processing (27), we ran an exploratory whole-brain
searchlight analysis to assess whether regions outside the hip-
pocampus also exhibited prediction of B decoding (train on B,
test on A). No clusters survived correction for multiple compar-
isons (SI Appendix, Fig. S4A), consistent with this effect being
relatively specific to the hippocampus ROI. To validate the sen-
sitivity of our approach, we repeated the analysis on perception
of B decoding (train on B, test on B). Several regions emerged
consistent with our a priori ROIs in visual cortex (SI Appendix,
Fig. S4B).
Relation between neural prediction and memory behavior.
Finally, we tested our key hypothesis that prediction from statis-
tical learning in the hippocampus is related to impaired encoding
of predictive items into episodic memory. We quantified this
brain–behavior relationship by correlating 1) each participant’s
decoding accuracy for prediction of B during A in the hippocam-
pus with 2) the participant’s difference in hit rate for A vs.
X categories in the memory test, which quantifies the relative
deficit in memory for predictive items (Fig. 3). Consistent with
our hypothesis, classification accuracy was negatively correlated
with this memory difference (r = −0.33, bootstrap P = 0.047,
two-tailed). That is, greater neural evidence for prediction of the
upcoming category was associated with worse encoding of the
current exemplar.

We included all participants in the correlation above, based on
the fact that we observed reliable hippocampal prediction of B at
the group level. However, some individuals had decoding accu-
racy at or below chance, which we do not interpret as meaningful

variance. To ensure that these individuals were not driving the
negative correlation, we reran the analysis limited to participants
with above-chance prediction of B. If anything, the correlation
got stronger (SI Appendix, Fig. S5; r = −0.63; bootstrap P <
0.001, two-tailed).

Discussion
Our findings suggest that prediction from statistical learning can
interfere with encoding into episodic memory, a process that
may be mediated by the hippocampus. Across our behavioral
studies (experiments 1a, 1b, and 2), we demonstrated a com-
petitive interaction between prediction and memory, such that
items which afford an accurate prediction of the upcoming cat-
egory were remembered worse than items which were unrelated
to prediction. In a subsequent fMRI study (experiment 3), the
magnitude of impaired memory for predictive items was asso-
ciated with neural evidence for the upcoming category in the
hippocampus during these items.

Relation to Other Studies of the Hippocampus. Our findings con-
tribute to growing evidence that the hippocampus plays an
important role in statistical learning (9, 18), including the com-
ponent processes of prediction (28, 29) and generalization (30).
In linking these functions to episodic memory, we integrate sta-
tistical learning with a broader literature on the role of the
hippocampus in memory encoding and retrieval. Specifically,
our findings resonate with the observation that encoding and
retrieval have fundamentally different requirements (17, 31,
32). Given a partial match between the current experience and
past experiences, encoding leverages pattern separation based
on the unique features of the current experience and stores a
new trace, but in doing so limits access to related old traces.
In contrast, retrieval invokes pattern completion to fill out
missing features from past experiences and access old traces,
but in doing so impedes the storage of a distinct, new trace.
To resolve this incompatibility, the hippocampus may toggle
between encoding and retrieval states on the timescale of mil-
liseconds to seconds (33, 34). In the present study, if seeing a
picture from an A category triggers pattern completion and acti-
vation of its associated B category, the hippocampus may be
pushed into a retrieval state that suppresses concurrent memory
encoding.

Our findings also resonate with recent findings that the hip-
pocampus represents retrieved information more robustly than
perceived information, whereas the visual cortex stably rep-
resents both perceived and retrieved information (35). These
findings are useful to consider in light of the pattern of decod-
ing results that we see across prediction and perception. First,
our hippocampal results are consistent with a preference of the
hippocampus in representing retrieved information. For exam-
ple, we found that during the presentation of A, the predicted
B information but not the perceived A information could be
decoded in the hippocampus. Such a finding could arise from
a bias of the hippocampus to represent retrieved information,
given a conflict between perception and retrieval. This might also
shed light on why only the perception of (predictable) B items,
but not A or X items, could be reliably decoded in the hippocam-
pus. Namely, B items may have benefited from retrieval of their
category during A. However, this stronger representation of B
items in the hippocampus did not translate to consistent evidence
for enhanced subsequent memory of B items. This raises intrigu-
ing questions about potential differences between prediction and
retrieval (36).

Second, the pattern of results we find across ROIs is in line
with the proposed dissociation between hippocampus and visual
cortex in perception and retrieval. Although we did not find
strong evidence for a dissociation among ROIs during predic-
tion, the effects were reliable only within the hippocampus. To
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the extent that the visual cortex is biased toward perceived infor-
mation and the hippocampus toward retrieved information (35),
these regions may prioritize different representations during the
predictive A items. Whereas the hippocampus may prioritize the
predicted B category (as discussed above), and this information
may be reinstated in parahippocampal and occipital cortices, the
concurrent perceptual information about the A category may
dominate and obscure any evidence for B. Indeed, prior studies
demonstrating memory-based reinstatement from the hippocam-
pus in visual cortex (28, 29, 37–39) were careful to ensure that no
conflicting sensory information was present.

Finally, the findings that the hippocampus preferentially rep-
resents retrieved information (35) suggest that perceived infor-
mation and retrieved information are coded distinctly in the
hippocampus and thus raise questions about the nature of hip-
pocampal representations during prediction and perception in
our task. In particular, the finding that the predicted B cate-
gory, but not the perceived A category itself could be decoded
during A, is especially notable because all of the classifiers
were trained on the perception of these categories prior to any
learning. Because the categories were counterbalanced across
participants, a classifier trained on the perception of a cate-
gory worked better during A when that category was one of
the predicted B categories than when it was one of the per-
ceived A categories. That is, the classifiers generalized from
perception to prediction better than from perception to per-
ception, at least in cases where prediction and perception con-
flicted (i.e., during A). These findings suggest that the format
of perceived and predicted information in the hippocampus
is similar, consistent with evidence of item-specific reinstate-
ment of perceived information in the hippocampus during
retrieval (40, 41).

Relation to Models of Learning and Memory. How is this interaction
between prediction and encoding implemented in the circuitry of
the hippocampus? A recent biologically plausible neural network
model of the hippocampus (9) suggests that episodic memory
and statistical learning depend on different pathways, the trisy-
naptic pathway (TSP) and the monosynaptic pathway (MSP),
respectively. The TSP consists of connections between entorhi-
nal cortex (EC), dentate gyrus (DG), and the cornu ammonis
(CA) subfields CA3 and CA1. In this pathway, DG and CA3 have
sparse activity because of high lateral inhibition, which allows
them to form distinct representations of similar experiences (i.e.,
pattern separation) and avoid interference between episodic
memories. The MSP consists of a direct connection between EC
and CA1. In this pathway, CA1 has lower inhibition and thus
higher overall activity and less sparsity, which leads to overlap
in the representations of similar experiences, emphasizing their
common elements or regularities. Notably, both the TSP and the
MSP converge on CA1, which is one potential locus of conflict
between episodic memory and statistical learning. Future studies
tailored for connectivity analysis and/or employing time-resolved
and spatially precise methods such as microelectrode intracranial
electroencephalography (EEG) in humans or cellular imaging or
recording in animal models are needed to better understand how
the hippocampal circuit arbitrates between these two forms of
learning.

Importantly, prior models of how the brain processes both
episodic memories and statistical regularities have focused on
a division of labor between the hippocampus and neocortex,
respectively (1). A key distinction between this traditional view
and more recent incarnations (9) is the timescale of statis-
tical learning: The MSP of the hippocampus is well suited
to learning regularities on the order of minutes to hours,
whereas the neocortex has a slower learning rate, better suited
to extracting regularities over days and weeks. Thus, the neo-
cortex may be important for extracting regularities that span

repeated experiences that are spaced out in time in the service
of long-timescale semantic memory, whereas the hippocam-
pus may be preferentially important for regularities experi-
enced repeatedly within the current environment. If true, the
hippocampus may consolidate not only discrete episodes into
cortex but also these short-timescale regularities. The relation-
ship between short- and long-timescale regularities remains an
interesting area for future research. This framework also raises
questions about predictions from semantic memory and whether
they would interfere with episodic encoding. A key distinction
from the kind of rapid statistical learning tasks employed here
is that such semantic memory-based predictions may emanate
through spreading activation within neocortex, anatomically
shielding them from interference by episodic encoding in the
hippocampus. However, whether semantic and episodic memo-
ries can be fully dissociated remains unclear (42), suggesting a
potential interaction of prediction from semantic memory with
episodic memory.

In considering the role of the hippocampus in mediating
between prediction and encoding, it is important to note that
episodic memories can themselves be used to form predictions
about the future (43). This may be particularly useful when reg-
ularities are sparsely distributed in time or space and may enable
learning via prediction error (44) and hypothesis testing (45).
The extent to which our finding that prediction interferes with
episodic encoding reflects a domain-general effect of prediction
on memory or is limited to prediction from statistical learning is
an exciting question for future research.

Characterizing the Role of Prediction in Memory. Our work also
raises future questions about the nature of the competition
between prediction and encoding. After learning predictive rela-
tionships in classical conditioning, blocking can occur when new
cues are introduced. After one conditioned stimulus (CS1) has
been paired with an unconditioned stimulus (US), no associa-
tive learning occurs when a second conditioned stimulus (CS2)
is added (46). This is interpreted as CS2 being redundant with
CS1, that is, not providing additional predictive value given that
the US can be fully explained by CS1. In the present study, the
A pictures contain two kinds of features: those that are diagnos-
tic of the category (e.g., sand and water for a beach) and those
that are idiosyncratic to each exemplar (e.g., particular people,
umbrellas, boats, etc.). If categorical features are sufficient to
predict the upcoming B category, idiosyncratic features may not
be attended or represented (47, 48), impeding the formation of
episodic memories. Our findings are not fully consistent with this
account, however. Blocking might predict that the A pictures are
represented more categorically, as this is what enables prediction
of the B category. Yet, during the presentation of A pictures we
found a trade-off in the hippocampus between neural evidence
for perception of the A category and prediction of the B cate-
gory. Nevertheless, more work is needed to better characterize
the deficit in memory for predictive items. Are certain aspects
of these memories lost while others are retained? Or are these
experiences encoded with less precision overall and/or subject to
heightened interference at retrieval? Characterizing associative
memory between specific A and B exemplars might be a fruitful
avenue for future investigation.

Limitations of the Current Study. The fMRI study supports and
extends the behavioral studies, but has two primary limitations.
First, although individual differences in the key memory effect
(lower hit rate for predictive vs. control items) were related
to neural evidence of hippocampal prediction in experiment 3,
this behavioral effect was not reliable at the group level, as it
was in experiment 1a and replicated in experiment 1b. Future
studies could improve the design to strengthen learning in the
scanner environment, including by training the classifier models
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in a way that does not require prelearning templates which may
have reduced learning (e.g., based on training data from differ-
ent participants or sessions). Second, a strong version of our
hypothesis would suggest that the amount of evidence for the
predicted B category on any given A trial should be related
to subsequent memory for that specific A item, namely a neg-
ative correlation across trials within participant. However, we
found evidence for this relationship only by first averaging clas-
sifier evidence and subsequent memory within participant and
then computing the correlation across participants. Methods that
provide cleaner and more time-resolved measurements, such as
intracranial EEG, may be better able to resolve neural evidence
on single trials to examine item-specific relationships.

Conclusions. Stepping back, why are the computationally oppos-
ing functions of episodic memory and statistical learning housed
together in the hippocampus? We propose that this shared
reliance might allow them to regulate each other. By analogy,
using one’s right foot to operate both the brake and gas ped-
als in a car serves as an anatomical constraint that forces one to
either accelerate or decelerate, but not both at the same time.
A similarly adaptive constraint may be present in the hippocam-
pus, reflecting mutual inhibition between episodic memory and
statistical learning. When predictive information is available in
the environment, further encoding may be redundant with exist-
ing knowledge. Moreover, encoding such experiences could risk
overfitting or improperly updating known, predictive regulari-
ties with idiosyncratic or noisy details. By focusing on upcoming
events, the hippocampus can better compare expectations and
inputs (49), prioritizing the encoding of novel and unexpected
events (50, 51).

Materials and Methods
Experiment 1a.
Participants. Thirty individuals (19 females; age range 18 to 31 y, mean
age = 21.2 y) were recruited from the Yale University community for either
course credit or $10 compensation. All participants provided informed
consent. This study was approved by the Yale University Human Subjects
Committee.
Stimuli and apparatus. Participants were seated∼50 cm away from a 69-cm
monitor (1,920 × 1,080-pixel resolution; 60-Hz refresh rate). Scene stimuli
consisted of 300 unique scene images drawn from 12 scene categories (25
images per category), collected from Google image searches. Each partici-
pant viewed 22 scenes from each category, randomly selected from the set
of 25. Sixteen of these images (per each category; 192 total) were used in the
encoding phase, 2 for the category pair test and 4 as foils in the recognition
test. Scene stimuli were presented centrally and subtended 27.8◦ × 20.8◦ of
visual angle. Stimuli were presented using MATLAB (The MathWorks) with
the Psychophysics Toolbox (52, 53).
Procedure. Participants first completed an encoding phase. On each trial,
they viewed a photograph of a scene for 1,000 ms, during which they had
to respond based on whether it contained a manmade object (Fig. 1A).
Participants were instructed to respond as quickly and accurately as possi-
ble (response mappings of “j”/“k” onto “yes”/“no” were counterbalanced
across participants), and we recorded response time and accuracy. The scene
remained on the screen for 1,000 ms regardless of button press to equate
encoding time, and trials were separated by a 500-ms interstimulus interval
(ISI) during which a fixation cross appeared.

Every scene was trial unique, but was drawn from 1 of 12 outdoor scene
categories (beaches, bridges, canyons, deserts, fields, forests, lakes, light-
houses, marshes, mountains, parks, and waterfalls; Fig. 1B). Each scene
category appeared 16 times over the course of the encoding phase, for a
total of 192 trials. The photographs for half of the scene categories always
contained a manmade object, and thus all exemplars in a category required
the same response, and the responses were balanced overall. Unbeknownst
to participants, and orthogonal to the required response, half of the scene
categories were assigned to pairs. Given the first scene in a pair (A cat-
egory scenes), the category of the second scene (B category scenes) was
predictable with a transition probability of 1.0. The other half of scene cat-
egories were neither predictive nor predictable (X category scenes). Pictures
from these categories were inserted on their own randomly, with the con-

straint that they could not be placed between an A category scene and a
B category scene. The assignment of scene categories to A/B/X conditions
was itself randomized for each participant. The order of the photograph
sequence was randomized with the following three constraints: category
pairs and pairs of category pairs could not repeat back to back (i.e., no
A1B1A1B1 or A1B1A2B2A1B1A2B2, where 1 and 2 index different exemplars);
repetitions of each category were spread equally across quartiles of the
encoding phase to minimize differences in study-test lag between cate-
gories; and the overall transition probability between yes and no responses
on the manmade cover task was forced to be statistically indistinguishable
from 0.5.

After the encoding phase, participants performed 5 min of a distracting
math phase to minimize recency effects. Each of 60 math problems consisted
of division and subtraction, and the answer to the problem was always 1, 2,
3, or 4. Participants responded using the 1, 2, 3, and 4 keys on the keyboard,
with a maximum response window of 5 s. The ISI was adjusted based on the
response time (5 s minus response time), to ensure that this phase lasted
exactly 5 min given the 60 trials. Participants were instructed to respond as
accurately as possible.

Participants then underwent two surprise memory tests (category pair
test and episodic memory test), the order of which was counterbalanced
across participants. The category pair test involved explicit judgments of
the category pairings from the encoding phase. Participants were presented
with two pairs of photographs on every test trial and were asked to indicate
which pair felt more familiar based only on what they had seen during the
encoding phase. The pairs were shown sequentially: The first scene from
one pair appeared for 1,000 ms, followed by a 500-ms blank interval, fol-
lowed by the second scene of the pair for 1,000 ms; after a 1,000-ms gap
with a fixation cross, a second pair was presented in the same manner. After
both pairs, participants responded using the “1” key to indicate if the first
pair felt more familiar or the “2” key if the second pair felt more familiar.
Participants had a maximum of 6 s to respond. Each scene in the category
pair test was a completely novel exemplar of its category. Half of the test
trials contained a true category pair (when it was a trial testing a pair from
the encoding phase); whether it appeared first or second was counterbal-
anced. The other half of the trials contained a dummy-coded pair of the
X categories (there was no correct answer on these trials). This was done
to equate the frequency of categories, which was important for partici-
pants who received the category pair test before the episodic memory test.
Each true/dummy-coded pair was tested twice against a scrambled pair of
the same categories (e.g., if beach→field, mountain→ bridge, canyon→
forest were category pairs from the encoding phase, the foils might be
beach→ bridge, mountain→ forest, canyon→field). Performance on this
category pair test for true pairs vs. scrambled pairs was not reliable in
either experiment 1a (mean accuracy = 0.48; vs. 0.5 chance: t(29) = −0.72,
P = 0.48) or experiment 2 (mean accuracy = 0.49; vs. 0.5 chance: t(29) =
−0.61, P = 0.55), nor did the order of the category pair test and episodic
memory test affect episodic memory behavior. Thus, the results of the cat-
egory pair test are not reported further and this test was not included in
experiments 1b and 3.

The episodic memory test was designed to assess episodic memory for
the trial-unique scenes from the encoding phase. On each trial, one scene
was presented and participants indicated whether it was “old” (i.e., pre-
sented during the encoding phase) or “new” (i.e., not previously seen in
the experiment). After making an old/new response (using j/k keys on the
keyboard), participants then rated their confidence in this response (“not
confident”/“confident,” using “d”/“f” keys). Participants had 6 s to make
each response. All 192 scene photographs from the encoding phase were
shown, in addition to 48 foils (4 novel exemplars from each category). The
order of the scenes was randomized.

Experiment 1b.
Participants. Eighty-three individuals were recruited from the online data
collection platform Prolific. All participants self-reported that they were
between the ages of 18 and 35 y, had normal or corrected-to-normal vision,
and lived in the United States or the United Kingdom. All participants pro-
vided informed consent. This study was approved by the Yale University
Human Subjects Committee. Nineteen participants were excluded based on
preregistered criteria, resulting in 64 usable participants, in line with our
preregistered sample size. The full preregistration for this study can be
found at https://aspredicted.org/ti687.pdf.
Stimuli and apparatus. Scene stimuli were the same as in experiment 1a.
Stimuli were presented using custom Javascript code for online testing.
Procedure. The procedure was identical to that in experiment 1a, except
for the following changes: During the encoding phase, all participants
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responded with the j key for yes and the k key for no; the math distrac-
tor task was simplified to contain only subtraction problems (no division);
and no category pair test was administered.

Experiment 2.
Participants. Thirty individuals (19 females; age range 18 to 23 y, mean
age = 19.3 y) were recruited from the Yale University community for either
course credit or $10 compensation. All participants provided informed
consent. This study was approved by the Yale University Human Subjects
Committee.
Stimuli and apparatus. Stimuli were the same as in experiment 1a.
Procedure. The procedure was identical to that of experiment 1a, with the
addition of a temporal source memory judgment in the test phase. That is,
participants were presented with a scene and first asked to judge whether
it was old or new (using the d and f keys). Then, old responses were fol-
lowed by the presentation of a timeline, bounded by the start and end clock
times of the encoding phase. Participants used the mouse to click along the
timeline to indicate when they remembered seeing the scene. No temporal
source judgments were collected after new responses.

Experiment 3.
Participants. Thirty-eight individuals (24 females; age range 18 to 35 y,
mean age = 23.1 y) were recruited from the Yale University community for
$30 compensation. All participants provided informed consent. This study
was approved by the Yale University Human Investigation Committee. We
chose this slightly larger sample size than those of the in-person behavioral
studies (experiments 1a and 2) under the assumption of a 20% attrition
rate in MRI studies, aiming for the same sample size of 30 participants. One
participant was excluded due to a neurological anomaly and one partici-
pant was excluded for chance-level episodic memory performance (overall
A′ <0.5). Additionally, one participant was excluded from response time
analyses because of a technical error that resulted in no responses being
collected for part of the encoding phase. Thus, the final sample size for
fMRI analysis and memory performance was 36 participants.
Stimuli and apparatus. Stimuli were presented on a rear-projection screen
using a projector (1,920× 1,068-pixel resolution; 60-Hz refresh rate). Partic-
ipants viewed the stimuli through a mirror mounted on the head coil. Scene
stimuli consisted of 480 unique images drawn from 12 categories (40 images
per category), collected from Google image searches (180 additional stimuli
were collected for this experiment; the other 300 are identical to those used
in experiments 1 and 2). Each participant viewed 39 scenes from every cat-
egory, randomly selected from the set of 40: 21 per category (252 total) for
the encoding phase, 14 (168) for the pre- and posttemplating phases, and 4
(48) as foils in the episodic memory test.
Procedure. The procedure was identical to that in experiment 1a other than
the following changes: Instead of one continuous block of the encoding
phase (with 16 repetitions of each scene category), the stream was divided
into three fMRI runs, each with 7 repetitions per category (such that there
were 21 repetitions per category in total across the encoding phase). As in
experiments 1a, 1b, and 2, each image was presented for 1 s, but the ISI
varied between 2 s (39.3% of trials), 3.5 s (39.3% of trials), and 5 s (21.4% of
trials) to jitter onsets for deconvolving event-related fMRI activity. For the
manmade object cover task, participants responded using their right index
and middle fingers on an MR-compatible button box.

Before and after the three runs of the encoding phase there were
pretemplating and posttemplating phases, respectively (one fMRI run each).
To participants, these phases were identical to the encoding phase (e.g.,
stimulus timing and task were identical). However, there were no category-
level regularities in these two runs. Scenes from all categories were pre-
sented in a random order. To limit the impact of this random presentation
on subsequent learning, participants completed a distracting math task
between the pretemplating run and the first encoding phase run. Each
of these five functional runs (three encoding phase runs and pre/postruns)
lasted 6.4 min.

For the episodic memory test, as in experiments 1a and 1b, a scene was
presented and participants indicated (with their index and pinky fingers)
whether it was old (i.e., presented during the encoding phase) or new (i.e.,
not previously seen in the experiment). They then rated their confidence
in this response (“very unsure,” “unsure,” “sure,” “very sure”), using their
index through pinky fingers, respectively. Participants had 6 s to respond to
each of these questions. They completed this task while in the scanner, but
no fMRI data were collected. No category pair test was administered in this
experiment.
MRI acquisition. Data were acquired on a Siemens Prisma 3T scanner
using a 64-channel head coil at the Magnetic Resonance Research Cen-

ter at Yale University. Functional images were acquired using an echo-
planar imaging (EPI) sequence with the following parameters: repeti-
tion time (TR) = 1,500 ms; echo time (TE) = 32 ms; 90 axial slices;
voxel size = 1.5 × 1.5 × 1.5 mm; flip angle = 64◦; multiband
factor = 6. Additionally, a pair of opposite phase-encode spin-echo vol-
umes were collected for distortion correction (TR = 11,220 ms; TE =
66 ms). One T1-weighted magnetization prepared rapid gradient echo
(MPRAGE) (TR = 1,800 ms; TE = 2.26 ms; voxel size = 1 × 1 × 1 mm;
208 sagittal slices; flip angle = 8◦) and two T2-weighted turbo spin echo
(TR = 11,390 ms; TE = 90 ms; 54 coronal slices; voxel size = 0.44 × 0.44 ×
1.5 mm; distance factor = 20%; flip angle = 150◦) anatomical images were
collected.
fMRI preprocessing. fMRI data processing was carried out using the
fMRI Expert Analysis Tool (FEAT) Version 6.00, part of FMRIB’s Software
Library (FSL) (http://www.fmrib.ox.ac.uk/fsl) version 5.0.10. EPI and anatom-
ical images were skull stripped using the Brain Extraction Tool (54).
Susceptibility-induced distortions measured via the opposing-phase spin
echo volumes were corrected using FSL’s topup tool (55). Each functional
run was high-pass filtered with a 128-s period cutoff, corrected for head
motion with Motion Correction using FMRIB’s Linear Image Registration
Tool (MCFLIRT) (56), and motion outliers were computed. Slice-timing cor-
rection was performed. No spatial smoothing was applied. Finally, the six
motion parameters, as well as motion outliers, were regressed against the
blood oxygenation level-dependent (BOLD) time course using a general
linear model (GLM). The residuals from this preprocessing model (which con-
tain BOLD responses to the task after controlling for motion) were then used
for subsequent analyses.

Functional images were registered to each participant’s T1 anatomical
scan using boundary-based registration, as well as to a 2-mm Montreal
Neurological Institute (MNI) standard brain, using 12 degrees of freedom.
Finally, the two T2 anatomical images collected were registered to one
another and averaged; the resulting averaged image was registered to the
T1 anatomical image using FLIRT (57).
Regions of interest. The hippocampus ROI was defined anatomically by
concatenating subfields CA1, CA2/3/DG, and subiculum. These hippocam-
pal subfields, as well as surrounding medial temporal lobe (MTL) cortical
regions including the parahippocampal cortex (PHC) ROI, were manually
segmented on each participant’s averaged T2 anatomical scan using pub-
lished anatomical landmarks (58–61). The occipital cortex ROI was defined
using the MNI structural atlas, thresholded at 25% probability. For each
region, we concatenated across left and right hemispheres to create one
bilateral ROI, as we had no hemisphere-specific hypotheses. These ROIs were
then transformed into the participant’s functional space for subsequent
analyses.
Category decoding analysis. A multivariate pattern classification approach
was used to assess evidence for a particular category during the encoding
phase. This approach involved training a classifier on fMRI activity patterns
for each category from the pretemplating run (when there were no regular-
ities present and none had been learned) and testing for classifier evidence
of these categories during the three (independent) runs of the encoding
phase. We tested for category evidence during all three runs of the encod-
ing phase, given prior work demonstrating that neural evidence of statistical
learning can occur quite rapidly (23, 62). Although the beginning of the first
run may contribute noise (as no learning can possibly have occurred), we
erred on the side of including more data.

For each functional run, the residuals from the preprocessing GLM (with
known noise sources removed but still containing task responses) were
aligned to the final functional run and z scored across time. The voxel ×
time matrices were then masked to include only voxels within an ROI. The
timepoints corresponding to the presentation of each of two categories of
interest were extracted and shifted by 3 TRs (4.5 s) to account for the hemo-
dynamic lag. The voxel activity patterns from these shifted timepoints were
then used as training or test data for the classifier. Timepoints that included
a motion outlier were excluded from the training/test sets.

Linear support vector machines were trained on data and labels from the
prelearning templating run, using the SVC function in Python’s scikit-learn
module, with a penalty parameter of 1.00. Classifiers were then tested with
data corresponding to the timepoints of the trained categories in the three
runs of the encoding phase (concatenated) and made guesses as to the cat-
egory label of each test example. Accuracy was computed as the proportion
of correct guesses.

We ran the following comparisons: perception of A (training on prelearn-
ing examples of A, testing for evidence of A during the presentation of A
in the encoding phase), perception of B (training on prelearning examples
of B, testing for evidence of B during the presentation of B in the encoding
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phase), lingering of A (training on prelearning examples of A, testing for
evidence of A during the presentation of B in the encoding phase), predic-
tion of B (training on prelearning examples of B, testing for evidence of B
during the presentation of A in the encoding phase), and perception of X
(training on prelearning examples of X, testing for evidence of X during the
presentation of X in the encoding phase).

Each participant encountered three A and three B categories over the
course of the experiment. Thus, for each of the four comparisons above,
we built three different binary classifiers and then averaged their accu-
racy. In other words, a classifier was trained to distinguish between two
scene categories from the same condition (e.g., B) based on the prelearn-
ing templating run and tested for evidence of those two categories during
the subsequent presentation of two categories (e.g., their corresponding As
for prediction of B) in the encoding phase. Accuracy (percent correct) was
then computed for each of these three classifiers (A1 vs. A2; A2 vs. A3; A1
vs. A3) and averaged, resulting in one mean accuracy value per comparison,
per participant.

To provide an example, if the category pairs were beach→field,
mountain→ bridge, canyon→ forest, then B classifiers would be trained
for field vs. bridge, bridge vs. forest, and field vs. forest. To calculate evi-
dence for prediction of B, the field vs. bridge classifier would be applied to
the beach and mountain trials—such that the classifier estimated evidence
for field and bridge during each beach or mountain trial—and accuracy was
computed (such that, for example, accuracy on a beach trial was 1 if the clas-
sifier outputted more evidence for field than for bridge). This was repeated
for the bridge vs. forest classifier (testing for evidence of these categories
during mountains and canyons) and the field vs. forest classifier (testing for
evidence of these categories during beaches and canyons). The accuracies of
these three classifiers were averaged into a single accuracy for each partici-
pant. This was repeated for the three other comparisons above and for each
ROI. To assess reliability at the group level, performance was compared to a
chance level of 0.50 across participants using a one-sample t test.

To quantify classification accuracy nonparametrically, we performed ran-
domization tests in which we computed an empirical null distribution of
classification accuracy values for each participant. The null distributions
were generated from 1,000 iterations of shuffling the category labels at
test prior to scoring the model. We then calculated a z score for each par-
ticipant’s true classification accuracy relative to their own null distribution.
To test reliability, we compared these z scores against 0 across participants
(SI Appendix, Fig. S3).
Assessing reliability of correlations. To estimate correlations across partic-
ipants robustly (e.g., as used in Relation between neural prediction and
memory behavior), we performed a random-effects bootstrap resampling
procedure (63). For each of 10,000 iterations, we randomly drew 36 par-
ticipants from our sample with replacement and recalculated the Pearson
correlation between the two variables of interest. This procedure oper-
ates under the assumption that if the effect is reliable across participants,
then the participants are interchangeable and which subset is resampled in
any given iteration will not affect the outcome. This approach also helps
mitigate the impact of outliers when calculating correlations from modest
sample sizes. The resulting sampling distribution can be used to generate
confidence intervals and perform null hypothesis testing. Specifically, we
calculated the P value as the proportion of iterations in which the corre-
lation value was of the opposite sign from the true correlation and then
multiplied by 2 for a two-tailed significance.

Data Availability. Behavioral data have been deposited in Dryad (https://doi.
org/10.5061/dryad.280gb5mmf) and fMRI data have been deposited in
OpenNeuro (https://openneuro.org/datasets/ds002144).
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