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ABSTRACT

Each day brings new experiences and the opportunity to form new episodic memories.
However, our everyday experiences are not isolated episodes; rather, there is significant spatial
and temporal structure that holds across experiences, allowing us to build up structured
knowledge about the world. We can then leverage this known structure to make predictions
about how new experiences will unfold. In a recent study in Open Mind, Poskanzer,
Tarder-Stoll, et al. found that such predictions benefitted episodic memory. Specifically, on
trials in which participants were successfully able to make predictions about an upcoming
experience, participants were more likely to encode that predictive information into memory.
These findings seem to stand in stark contrast to other recent work, which found the opposite
of worse episodic memory for predictive cues (Sherman et al., 2022; Sherman & Turk-Browne,
2020). How can these discrepant findings be reconciled? Here, | discuss several key task
differences that might explain the discrepancy and highlight avenues for future research which
might help to theoretically disentangle the contexts under which prediction may impede vs.
facilitate episodic encoding.

INTRODUCTION

Our days are filled with repetitive, statistical structure: Our commutes to work, where we park,
and even conversations with colleagues often follow a predictable formula. Yet, layered on top
of that structure are unique episodes (e.g., passing by your neighbor decorating for the holi-
days, finding a bird perched on your car, or being surprised when a colleague unexpectedly
brings donuts to a meeting). These facets of experience can interact: If you are in the state of
predicting (i.e., thinking about the next turn on your commute), you may be more or less
attuned to what’s going on around you, and your memory for the specifics of the commute
may be affected accordingly.

How does the predictable structure of experience influence our ability to encode unique
details into memory? In other words, when we're actively leveraging known structure to make
predictions about upcoming events, how does that prediction affect our encoding of the cur-
rent moment? In a recent study, Poskanzer, Tarder-Stoll, et al. (2025; hereafter referred to as
PTSA) present findings from three experiments which suggest that prediction of the future can
improve encoding of the present.

In all three experiments, participants were first exposed to a series of scene exemplars
which contained statistical structure in the temporal order of the categories. The statistical
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structure differed across experiments, but roughly the structure was defined as certain scene
subcategories reliably followed by other subcategories. After familiarizing participants to this
sequential structure (in an “Initial Structure Learning” Phase), participants underwent a
“Simultaneous Prediction and Encoding” Phase in which they were shown novel exemplars
from the same scene subcategories and were explicitly asked to make predictions about
upcoming image subcategories. This also served as an incidental encoding task, as partici-
pants’ memory for these images was subsequently tested in a surprise memory test. The key
question was how participants’ memory for these images was influenced by whether they
made a successful prediction. They observed trial-by-trial relationships between prediction
and memory: successful prediction was associated with better recognition memory for the
specific predictive exemplar.

These data provide provocative evidence that there may be a positive relationship between
prediction and encoding. However, as the authors note in their paper, these findings conflict
with other work demonstrating a negative relationship between prediction and encoding.
Indeed, Sherman and Turk-Browne ( ; hereafter referred to as STB) found that prediction
led to worse memory. Specifically, in their study, participants were exposed to a sequence of
trial-unique scene images, in which certain scene subcategories (predictive A categories) reli-
ably preceded others (predictable B categories); other scene subcategories (unpaired X catego-
ries) were included as control items which were neither predictive nor predictable ( ).
Thus, participants could both form a unique episodic memory for each trial-unique scene
exemplar, and they could learn to extract the higher-order temporal statistics (i.e., which scene
subcategories follow one another). Behaviorally, STB found that memory for the predictive A
images was significantly worse, relative to the unpaired control items, suggesting that predic-
tion impeded encoding of the present. Supporting this interpretation, they found that greater
evidence of prediction in the hippocampus (as measured via fMRI decoding) was associated
with this behavioral trade-off across participants. In subsequent work, they further observed a
trial-by-trial negative relationship between memory for predictive items and neural evidence
for prediction from intracranial electrodes in visual cortex (Sherman et al., ). They took
this as evidence for a trade-off between prediction and encoding, such that when the hippo-
campus can use the current experience to generate a prediction, it is worse at encoding the
specifics of the current experience (see also Sherman et al., ).

The seemingly opposite pattern of findings from PTSA and STB are puzzling on the surface,
especially given the similarity of their paradigms. Indeed, PTSA’s Experiment 3 used the same
statistical structure as STB ( ). That said, there are several differences in the paradigms
that—as PTSA note in their General Discussion—may be more than superficial. These differ-
ences may provide important theoretical insight into why and when prediction impairs versus
improves memory. In this paper, | take a deep dive into the differences between the paradigms
in the hopes of (i) resolving some of the discrepancies in past findings and (ii) providing ave-
nues for future research that could lead to a more comprehensive account of the relationship
between prediction and memory.

KEY DIFFERENCES BETWEEN STB AND PTSA’S PARADIGMS

There are three primary differences between STB and PTSA’s paradigms: (1) the pre-exposure
to the statistical structure; (2) incidental vs. explicit structure learning and prediction; and (3)
differences in encoding time. In the below subsections, | walk through each of these factors
and argue that these differences have significant practical and theoretical consequences,
which may shed light on the discrepant results between studies.
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Figure 1. Comparison of paradigms and data from Sherman and Turk-Browne (STB; Experiment 1) and Poskanzer, Tarder-Stoll, et al. (PTSA;
Experiment 3). (A) In both experiments, participants were exposed to a sequence of scene images, in which certain scene subcategories (pre-
dictive A) were reliably followed by others (predictable B). The other scene subcategories were neither predictive nor predictable and thus
were randomly inserted throughout the sequence (control X). (B) In STB’s study, participants viewed one continuous stream of scene images
(following the structure depicted in panel A), during which participants judged whether or not each image contained a manmade object. Each
image was presented for 1 second. (C) In PTSA’s study, participants first underwent an “Initial Structure Learning Phase” in which they viewed a
sequence of images and were instructed that certain scene subcategories followed one another. They subsequently underwent a “Simultaneous
Encoding and Prediction Phase” in which each image was presented for 3 seconds and participants were tasked with explicitly reporting
whether or not they could predict the category of the upcoming image. They then were shown a screen displaying all 12 scene subcategories
(along with a “Random Image” option) and were asked to indicate which of the scene subcategories they predicted would be next. If they had
indicated that they couldn’t predict the upcoming image, they were instructed to select the “Random Image” option. (D) Data from the surprise
memory test in STB’s Experiment 1a. Participants were significantly worse at remembering the predictive A images, relative to both predictable
B and control X. (E) Data from the surprise memory test in PTSA’s Experiment 3, in which participants were tested on the images encountered
in the Simultaneous Encoding and Prediction Phase. Participants were significantly better at remembering the predictive A images, relative to
the control X images. Error bars represent +1 SEM within participant.

Differences in Sequence Exposure: Reducing Temporal Competition Between Episodic Memory and
Statistical Learning

In STB’s experiments, participants underwent a single encoding phase. Participants were
shown a sequence of scene images and, for each image, asked to make a judgment about
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whether there was a manmade object in the scene ( ). This question was chosen to
balance the opportunities for episodic encoding (as participants may need to search each
image for the manmade object, thus orienting them to the episodic details) and statistical learn-
ing (as over time, participants can learn which scene subcategories reliably followed one
another). Statistical learning, in turn, can enable prediction, as once the statistics are known,
participants can leverage the learned sequential structure to predict the upcoming category
(leading to a facilitated response in judging whether the scene contained a manmade object).
The experiments’ purpose was thus to see whether either statistical learning-based prediction
or episodic encoding would be naturally favored, given the opportunity to use either
approach.

PTSA, on the other hand, separated encoding into two phases. Participants first underwent
an Initial Structure Learning Phase, in which they were pre-exposed to sequences that con-
tained the temporal statistics and were explicitly tasked with uncovering the hidden temporal

structure ( , left). This was then followed by a Simultaneous Encoding and Prediction
Phase, in which participants made predictions while incidentally encoding the images
( , right).

Thus, whereas in STB’s study, participants were learning the temporal statistics at the same
time that they were encoding, PTSA’s design front-loaded the learning of the temporal statis-
tics. This difference is important insofar as STB's effects may critically depend on whether sta-
tistical learning and episodic encoding are in temporal competition with one another. For
example, in interpreting their evidence for trade-offs, STB argue when the statistics of the envi-
ronment are noisy (i.e., during learning) it may be more adaptive to make a (testable) predic-
tion about what might be coming next, rather than using those resources to precisely encode
the current experience (which is largely redundant with what already exists in memory). How-
ever, if learning is complete by the time of encoding (as is perhaps true in PTSA’s study), then
resources instead might be re-allocated to encoding the idiosyncratic details of a given expe-
rience. That is, to the extent to that prediction and memory trade-off with one another in time
(see further discussion of this in the subsection

below), then as predictions become better learned
and more efficient, more time can be devoted to episodic encoding. This account would pre-
dict a shift in the relationship between prediction and encoding over an extended period of
learning: (Relatively) early on, there may be evidence for a trade-off, but as the temporal sta-
tistics becomes over-learned, there may be a facilitation. Because STB only probe the rela-
tively early stages of learning (with relatively few exposures, compared to prior work using
a similar paradigm; Brady & Oliva, ) and PTSA only test memory for the images that were
presented after extensive explicit structure learning, this possibility cannot be assessed in either
current dataset. Future work directly manipulating the amount of pre-exposure would help to
disentangle these possibilities.

Differences in Explicit Orientation to Structure: Consequences for Prediction Strength

During the Initial Structure Learning Phase, in which participants were pre-exposed to the
sequential structure, PTSA explicitly tasked participants with uncovering the hidden structure.
This presents another difference relative to STB, where the learning of structure was fully inci-
dental. Whether and how the explicitness of learning might affect the nature of the learning
process—as well as subsequent memory outcomes—is an open question. For example, it is
possible that more explicit learning of structure in PTSA’s studies engages different processes
than traditional, implicit “statistical learning” (Batterink et al., ). That said, there is mixed
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evidence regarding the extent to which explicit knowledge affects statistical learning, with
some studies finding no differences in statistical learning under explicit vs. implicit conditions
(e.g., Arciuli et al., ; see further discussion in Siegelman & Frost, ).

Nevertheless, the choice to explicitly orient participants to the structure was consequential
insofar as it enabled another key design difference. Specifically, in PTSA’s experiments, pre-
diction was explicit: On every trial of the Simultaneous Encoding and Prediction Phase, par-
ticipants were tasked with predicting the upcoming scene subcategory ( , right). This
contrasts with STB’s experiments, in which prediction was incidental and occurred as a con-
sequence of ongoing statistical learning.

Together, the explicit task of prediction, along with the extensive pre-exposure to the
sequential structure and the explicit orientation to the structure during the Initial Structure
Learning Phase, meant that participants in PTSA’s study were likely making ‘stronger’, more
certain predictions than participants in STB’s study. How might the strength of prediction inter-
act with memory encoding? On the one hand, the explicit task of prediction might have led to
even greater competition between prediction and memory (i.e., a stronger version of what STB
found): If prediction and memory trade-off, then one might expect that stronger predictions
would be associated with worse encoding. Relatedly, because participants in PTSA’s study
were tasked with explicit prediction (while encoding was incidental), one might expect that
participants would simply follow the instruction to predict and, consequently, not encode the
details, leading to an apparent trade-off. On the other hand, however, it is possible that as
predictions become stronger and more certain, there is not as much need for competition:
Prediction can occur more easily and efficiently, and resources can instead be dedicated to
encoding. PTSA’s data perhaps provide some evidence for the latter possibility: In their Exper-
iment 1, participants were tasked with predicting images that would occur 1-4 steps in the
future. The effects scaled with prediction distance, such that closer predictions were faster,
more accurate, and associated with better memory, suggesting that prediction strength indeed
might affect memory in a graded fashion.

That said, it is unclear how exactly the explicit orientation to structure and/or prediction
might be affecting prediction strength. It is worth noting, for example, that prediction accuracy
in PTSA’s experiments ranged from an average of 60-73%. Although this is not ceiling perfor-
mance, it is unclear what level of accuracy to expect if structure learning and/or prediction
were not explicit (as STB did not behaviorally measure prediction accuracy). Thus, future work
manipulating explicit knowledge of the structure and/or whether predictions are made explic-
itly vs. implicitly will be important for understanding the relationship between prediction
strength and memory outcomes.

Differences in Encoding Time: Temporal Dynamics of Encoding/Retrieval Trade-Offs

The choice to explicitly test participants’ predictions on each trial required another key change
to the task: Participants had to be given considerably more time to view and respond to each
image. Whereas STB presented each image for 1s (during which participants presumably
encoded each image and made their prediction), PTSA presented their images 3—4 times
longer (depending on the experiment).

The timing matters insofar as both PTSA and STB suggest that their findings may arise from
the need to balance between two mutually exclusive processing states in the hippocampus.
Specifically, an influential model of the hippocampus (e.g., Hasselmo, ; Hasselmo et al.,

) proposes that the hippocampus toggles between an encoding state (supporting encoding
of the external environment) and a retrieval state (supporting retrieval of past memories).
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Behavioral work in humans supports the notion that the two states are mutually exclusive,
such that encoding and retrieval cannot co-occur in time (Duncan et al., ; Patil &
Duncan, ). Relating these processing states to their data, STB argue that when partic-
ipants are engaged in prediction, they are in a ‘retrieval state’ in which they are drawing from
past experiences to generate a prediction. Being in such a ‘retrieval state’ thus renders them
unable to encode the details (i.e., be in a simultaneous ‘encoding state’). PTSA, on the other
hand, posit that once prediction is complete (i.e., successful), participants can efficiently
switch back to an encoding state, driving a positive relationship between prediction success
and encoding success.

The idea that encoding and retrieval states might dynamically toggle based on the outcome
of one state is an intriguing possibility that will need to be explored in further work. However,
if this mechanism is at play, then why would STB have ever observed a trade-off? The differ-
ence in encoding time across the studies may play a critical role in determining whether
encoding and prediction interfere with or facilitate one another. It could be the case that when
the system is under strain (because there is limited time to both encode and predict, as in STB),
a trade-off will emerge. But, if there is sufficient time to switch between encoding and retrieval
(as in PTSA; enabling resources to be dedicated to both processes), then the two processes
could co-exist or even facilitate each other.

This dissociation is perhaps consistent with PTSA’s Experiment 1, in which participants
were tasked with making predictions that were 1-4 steps in the future. They found that as
prediction distance increased, memory encoding decreased (controlling for prediction suc-
cess). This supports the notion that time may arbitrate between prediction and encoding:
When predictions are farther in the future and thus more effortful (supported empirically
by longer response times), then there is less time to switch back into a successful encoding
state, leading to a trade-off. The time-dependency of trade-offs is also supported by prior
behavioral work demonstrating competition between encoding and retrieval states for short
(.5-1 s) but not long (1.5+ s) inter-stimulus intervals (Duncan et al., ; Patil & Duncan,

). Future work using time-resolved methods to track encoding and retrieval states (e.g.,
Long & Kuhl, ) may be useful in fortifying the links between encoding/retrieval dynam-
ics and behavior.

OPEN QUESTIONS AND BROADER IMPLICATIONS

In the above section, | outlined some key design differences between PTSA and STB that may
explain the divergent results. Although these factors bring us a step closer to understanding
why prediction might both facilitate and impair memory, there are still several open questions
about how precisely prediction and memory interact. Here, | focus on three broad questions:
(1) Whether the effects of prediction on memory may depend on the accuracy of the predic-
tion; (2) What mechanisms within the hippocampus might mediate the relationship between
prediction and encoding; and (3) How to unify the inter-related concepts of retrieval, predic-
tion, and statistical learning.

Act of Prediction or the Consequences of Prediction?

Fundamentally, STB claim that the process of generating a prediction is what leads to impaired
encoding of the present—regardless of whether that prediction is successful or not. PTSA, on
the other hand, make a specific claim about successful prediction. They propose that when
prediction is successful, the retrieval state can end, leading to more efficient switching back to
an encoding state, promoting enhanced encoding. However, at the time of prediction, how
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could the brain know whether a prediction is successful or not? Without explicit feedback, the
mind would only know whether it’s predicting or not, and as long as it’s in a retrieval state (i.e.,
the act of predicting), then it should not be able to be in an encoding state. One might thus
expect the results to track with prediction speed or prediction confidence, rather than predic-
tion accuracy. In other words, the switch back to an encoding state may occur whenever the
act of predicting is complete, rather than being modulated by whether the prediction is
accurate.

The idea that something akin to prediction completion, rather than accuracy, may matter is
perhaps consistent with PTSA’s framing of their findings: They argue that the switch between a
retrieval and encoding state may be governed by whether or not participants meet the
“retrieval goal” of prediction. However, because their primary outcome measure is prediction
accuracy, it is difficult to disentangle whether their results truly track with accuracy or “pre-
diction completion.”

This distinction is important, as it has consequences for the potential mechanism by
which prediction and encoding interact. If prediction accuracy, rather than completion,
tracks memory, this may suggest that the facilitation between prediction and encoding is
not something which occurs online (due to shifting encoding and retrieval states), but rather
is something which occurs retroactively, at the time of prediction confirmation. One possi-
bility, for example, is that when a prediction is confirmed, participants reactivate the predic-
tive (A) item while viewing the predicted (B) item as a means of reinforcing the association.
When a prediction is violated, on the other hand, participants may try to actively suppress
the association between the two items, leading to a retroactive forgetting of the predictive
one (perhaps via a nonmonotonic plasticity mechanism; Ritvo et al., ). Such an effect
could explain how prediction accuracy could track memory performance, even without an
online interaction between the two. The critical point is that it is important to disentangle
prediction itself from the consequences of prediction. There is a large body of work on the
effects of predictions vs. prediction errors on memory for predictable information (e.g., Bein
etal., ; Greve et al., ; Huang et al., ). However, such work does not examine
the consequences of prediction/prediction error for memory of the predictive cue, as in the
PTSA and STB studies.

That said, there is at least some evidence in PTSA’s data to argue against this “offline”
interpretation. Specifically, in Experiments 1-2, participants received no “feedback” about
whether their predictions were correct: Images in the Simultaneous Encoding and Prediction
Phase were presented in a random order, such that, although participants made a prediction
on every trial, the following trial was not diagnostic of whether their prediction was correct.
However, in Experiment 3, the learned temporal structure was preserved during the Simul-
taneous Encoding and Prediction Phase, such that participants received implicit feedback
about whether their prediction were correct. They found the same pattern of results across
both manipulations, suggesting that prediction confirmation (i.e., learning whether the pre-
diction was indeed accurate) may not play a significant modulating role, at least in their
current design. It is worth noting, however, that prediction accuracy may be confounded
with “time to predict” in their study: Accurate predictions tended to be faster, making it dif-
ficult to disentangle the two. However, there may be circumstances in which accuracy and
confidence diverge (e.g., with limited data, participants may pick up on spurious temporal
relationships, leading to confident, but inaccurate predictions), and testing such cases would
be crucial for addressing whether the interaction between prediction and memory is gov-
erned by accurate vs. complete predictions.
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Time-resolved neural measures might also provide insight into whether prediction and
memory interact online (as a function of the prediction itself) vs. offline (as a function of
the prediction outcome). For example, Sherman et al. ( ) used intracranial recordings from
epilepsy patients to track evidence for prediction and relate to memory outcomes. They found
that evidence for prediction specifically during the inter-stimulus-interval period after the pre-
dictive (A) but before the predictable (B) items related to worse memory for the predictive item.
A similar time-resolved approach may be fruitful in understanding how the processing of the
prediction outcome is related to subsequent memory performance. It is possible, for instance,
that there are dissociable neural signals during the predictive vs. predictable cue, which com-
bined give rise to improved (or impaired) memory for predictive items.

Hippocampal Mechanisms Underlying the Relationship Between Prediction and Memory?

PTSA took inspiration from and frame their findings in light of encoding and retrieval modes
in the hippocampus (Hasselmo, ). Although STB invoke the idea of encoding-retrieval
trade-offs in interpreting their results and cite that as a potential mechanism, their study was
primarily inspired by the C-HORSE model (Schapiro et al., ; Sucevi¢ & Schapiro, ;
Zhou et al., ), which proposes that separate subcircuits within the hippocampus can
support episodic memory and statistical learning (i.e., the integration across related memo-
ries, which enables prediction). Whereas competition in the Hasselmo model arises from
mutually exclusive encoding and retrieval modes, a conflict in C-HORSE could theoretically
arise because subfield CA1 is part of both hippocampal circuits. This means that CAT could
be a computational bottleneck, determining whether episodically or statistically encoded
information will be represented. Although this possibility has not been fully explored within
C-HORSE, there is some evidence for trade-offs across the two pathways (Su¢evi¢ & Schapiro,

). Thus, STB hypothesized that when faced with the simultaneous goals of prediction
(from statistical learning) and episodic encoding, competition between hippocampal circuits
leads to a trade-off.

Both models are instantiated in the same underlying hippocampal circuitry (see ). In
fact, the learning mechanisms implemented in C-HORSE were inspired by the encoding-
retrieval dynamics of the Hasselmo model (Ketz et al., ). In spite of this, the mapping
of the two models to one another is not straightforward. In the Hasselmo model, the pathway
from entorhinal cortex (EC) = CA1 primarily plays a role in encoding. In C-HORSE, on the
other hand, EC = CA1 supports the specific process of statistical learning, which may be com-
putationally opposing to “encoding”. Although it is outside of the scope of this paper to rec-
oncile the discrepancies between the two models, it is worth noting that the models make
distinct predictions about the mapping of different kinds of memory-based behavior onto dif-
ferent hippocampal subcircuits.

Ultimately, the key question is whether either or both of these models can account for the
bi-directional effects of prediction on memory observed in PTSA and STB. One possibility,
for instance, is that the Hasselmo model could account for both effects by manipulating the
timing of the switch between retrieval and encoding modes. Under current instantiations of
the model, the encoding state occurs at the peak of the CAT theta cycle, and the retrieval
state occurs at the trough, such that encoding and retrieval oscillate at the frequency of theta.
Perhaps that timing could produce the trade-offs that STB observed. PTSA’s data could then
perhaps be accommodated by the model by making the switch between encoding and
retrieval governed not by theta but by the act of prediction/retrieval. Such a finding would
suggest that the timing of encoding-retrieval dynamics could explain the discrepancies
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Figure 2. Comparison of Hasselmo model and C-HORSE. In the Hasselmo model, the ‘encoding
mode’ (top left) is marked by a relatively greater influence of Entorhinal Cortex (EC) inputs on the
hippocampus. In contrast, in C-HORSE, episodic memory (top right), depends on the pathway from
EC = CA3/DG = CA1. Despite these (partially) opposing pathways, both support the pattern-
separated behavior required for encoding the episodic details of the current experience (top mid-
dle). In Hasselmo’s ‘retrieval mode” (bottom left), there is a relative strengthening of recurrent CA3
connections and CA3 = CA1 connections, which supports an internal focus on retrieving prior
memories (bottom middle). In C-HORSE, statistical learning (which enables prediction, presumably
relying on retrieval), depends on the EC = CA1 pathway.

between PTSA and STB, and would generate predictions about how the timing of inputs from
EC vs. CA3 onto CA1 might explain both positive and negative relationship between predic-
tion and memory.

Another possibility is that C-HORSE might be able to account for both effects: More recent
instantiations of C-HORSE (Zhou et al., ) provide mechanisms by which the strength of
the pathways could be modulated. For example, perhaps when the monosynaptic pathway,
the pathway from EC = CA1 which supports statistical learning, is more dominant (thus exert-
ing a greater influence on the CA1 bottleneck), then the model would produce trade-offs akin
to STB’s results. But if the trisynaptic pathway, the pathway from EC = CA3/DG = CA1 which
supports episodic memory, is more dominant, then memory encoding might be enhanced, per
PTSA’s data (though it is unclear how this would lead to a facilitation across the two
pathways/processes). It is also possible that changing the relative influences of the pathways
on CAT1 as a function of time might be useful in understanding whether C-HORSE can produce
both trade-offs and facilitations. Such patterns would then raise questions about what factors
might be controlling the influence of the two pathways on CA1 representations.

Grounding the behavior in computational models can also allow for tighter predictions
about the distinct roles of hippocampal subfields in supporting different types of memory
behavior (which could subsequently be empirically tested). Thus, understanding the relation-
ship between behavior and hippocampal mechanisms holds promise not only for delineating
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when prediction facilitates vs. interferes with memory encoding, but also for deepening our
understanding of how hippocampal circuits functionally support memory formation.

Statistical Learning, Prediction, and Retrieval: One and the Same?

A close scrutiny of the aforementioned models also reveals important gaps in our understand-
ing of the relationship between the key memory constructs studied by STB and PTSA. For
example, in interpreting their results with respect to the Hasselmo model, STB and PTSA
assume that predictions (which were presumably acquired via statistical learning) are a type
of ‘retrieval’, as the Hasselmo model has no distinction between ‘prediction” and ‘retrieval’. Is
this a valid assumption?

The Hasselmo model also does not distinguish between “episodic memory” and “statistical
learning”. This raises an important issue: Are predictions from statistical learning the same
thing as predictions from episodic memory? Possibly not: Whereas a prediction from episodic
memory may be more phenomenologically akin to a direct ‘retrieval’, predictions from statis-
tical learning may be noisier and/or less precise, as they reflect abstraction across multiple
episodes. For example, if you're trying to decide how early to arrive for a flight at your local
airport over a holiday weekend, you might rely heavily on your most recent holiday travel
experience at that specific airport (i.e., by retrieving your episodic memory for that experience
and applying it to make a prediction about what the airport may be like this time). On the other
hand, if you're traveling through an airport that you’ve never been to before, you might instead
rely on your aggregated experiences across several different trips, leading to a more general
prediction that isn’t necessarily grounded in specific, episodic details. Recent work has sug-
gested that the hippocampal mismatch signals specifically respond to episodic, but not seman-
tic, prediction errors (Varga et al., ), providing an initial suggestion that different types of
prediction may rely on distinct mechanisms. Whether and how one type of prediction may be
more akin to a canonical ‘retrieval’” mechanism remains an important open question that bears
on whether encoding/retrieval trade-offs of the Hasselmo model can explain the results of STB
and/or PTSA.

The question of whether predictions from statistical learning differ from predictions from
episodic memory relates to another important question: Is there a difference between the pro-
cess of statistical learning and making a prediction from statistical learning? In other words,
whereas acquiring statistical regularities may depend on the “statistical learning” pathway
of the hippocampus (per C-HORSE), perhaps applying learned regularities (in the service of
prediction) is a different computational process with different neural substrates (perhaps sup-
ported by a ‘retrieval’” mechanism). Some work points to a common mechanism: In recent
modeling work, Singh et al. ( ) found that subfield CA1, which supports statistical learning
in C-HORSE, can account for prediction-based memory distortions, suggesting that a single
subfield may be responsible both for learning the regularities and supporting prediction-based

"1 have focused on the role of the hippocampus in arbitrating between these learning and memory processes,
given the prominence of these models and their influence in the framing of both PTSA and STB’s studies.
However, there are likely many other brain regions at play in arbitrating between these learning processes.
For example, large parts of sensory cortex are involved in prediction and statistical learning (Sherman et al.,

, ), and the hippocampus perhaps works in concert with these regions to support statistical learning
(Zhou & Turk-Browne, ). Given that memory encoding also involves cortical representations (e.g., Lee
et al., ), it is possible that some interaction between prediction and memory may occur within cortex.
Additionally, there is likely involvement of top-down control regions (perhaps medial prefrontal cortex; see
Sherman et al., ) onto the hippocampus, which may govern the way the hippocampus encodes statistical
vs. episodic information.
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behavior. Further investigation into whether this is one or two processes will be important for
(i) reconciling the Hasselmo and C-HORSE models, and (ii) understanding why the relation-
ship between encoding and prediction may change over the course of learning.

Finally, understanding the nature of the relationship between statistical learning, prediction,
and retrieval will require understanding whether predictions in PTSA’s experiments were in fact
driven by statistical learning. Given that participants were explicitly tasked with learning the
structure, it is possible that they engaged different mechanisms, such that their learning and pre-
dictions were more episodic in nature. In other words, it is possible that STB’s participants
engaged in prediction from statistical learning whereas PTSA’s participants engaged in predic-
tion from episodic memory. However, regardless of whether predictions arose from statistical
learning vs. episodic memory, it is worth noting that, given the nature of the task, the predictions
that participants make were inherently probabilistic in nature. Because each individual scene
exemplar is novel, predictions—whether through statistical learning or through episodically
retrieving a past exemplar—can only go so far: If a participant predicts that a beach image will
appear next, they may be predicting blue sky, sand, and ocean, but they cannot predict all of the
idiosyncrasies of the image-to-be-shown. However, because both PTSA and STB only probe rec-
ognition memory for whole images, they are not sensitive to whether the specifics of the predic-
tion matter. In other words, it is possible that prediction and memory interact in a feature-specific
way: Perhaps prediction specifically impairs or enhances memory for the features of an event
that were consistent (or inconsistent) with the prediction. Addressing this question will be impor-
tant for understanding the precise relationship between prediction and memory encoding.

CONCLUSION

Taken together, the studies of PTSA and STB raise an intriguing question: How and why can
prediction have opposing influences on episodic memory encoding? Unraveling this mystery
has consequences far beyond understanding the methodological differences of the studies.
Rather, understanding the circumstances under which prediction helps vs. hinders new mem-
ory formation has deep implications for understanding how our memory systems interact and
give rise to adaptive, future-oriented behavior.
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