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Abstract The function of long-term memory is not just to reminisce about the past, but also to make10

predictions that help us behave appropriately and efficiently in the future. This predictive function of11

memory provides a new perspective on the classic question from memory research of why we remember12

some things but not others. If prediction is a key outcome of memory, then the extent to which an item13

generates a prediction signifies that this information already exists in memory and need not be encoded.14

We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in15

visual cortex during a statistical learning task and link the strength of these predictions to subsequent16

episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of17

which contained regularities that allowed the category of the next scene to be predicted. We verified that18

statistical learning occurred using neural frequency tagging and measured category prediction with19

multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by20

predictive items that were subsequently forgotten. Such interference provides a mechanism by which21

prediction can regulate memory formation to prioritize encoding of information that could help learn new22

predictive relationships.23

Significance Statement. When faced with a new experience, we are rarely at a loss for what to do.24

Rather, because many aspects of the world are stable over time, we rely upon past experiences to25

generate expectations that guide behavior. Here we show that these expectations during a new26

experience come at the expense of memory for that experience. From intracranial recordings of visual27

cortex, we decoded what humans expected to see next in a series of photographs based on patterns of28

neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in29

a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak30

expectations could help improve these expectations in future encounters.31

32

Introduction33

Long-term memory has a limited capacity, and thus a major goal of psychology and neuroscience has34

been to identify factors that determine which memories to store. Well-known factors include attention35

(Aly and Turk-Browne, 2017), emotion (Dolcos et al., 2017), motivation (Dickerson and Adcock, 2018), stress36

(Goldfarb, 2019), and sleep (Cowan et al., 2021). Here we further test a novel factor that constrains long-37

term memory formation: predictive value.38
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Beyond reliving the past, a key function ofmemory is that it allows us to predict the future (Schacter et al.,39

2012). When faced with a new experience, we draw on related experiences from the past to know what is40

likely to happen when and where (De Brigard, 2014; Biderman et al., 2020). This knowledge is the result41

of statistical learning, which identifies patterns or regularities in the environment that repeat over time42

(Sherman et al., 2020; Endress and Johnson, 2021) and form the basis of predictions (De Lange et al., 2018).43

We hypothesize that the availability of these predictions during encoding affects whether a newmemory is44

formed. Namely, if one of the main objectives of long-termmemory is to enable prediction, in the service of45

adaptive behavior, experiences that already generate a predictionmay not need to be encoded. In contrast,46

experiences that yield uncertainty about what will happen next may be more important to store because47

they can help learn over time what should have been expected. Note that this is distinct from whether48

an experience being encoded was itself expected or unexpected, which also affects subsequent memory49

(Greve et al., 2017; Bein et al., 2021); rather, we argue that the process of generating a prediction based on50

the experience impedes its encoding.51

We term this ability of an experience to generate a prediction its predictive value. We previously pre-52

sented some suggestive evidence for predictive value as an encoding factor. In a statistical learning study53

with images presented in temporal pairs, subsequent memory for the first item in a pair was impaired rela-54

tive to unpaired control items (Sherman and Turk-Browne, 2020). Because the first item in a pair was always55

followed by the second item, it could have enabled a prediction of the second item and thus had predictive56

value.57

However, this prior study was not able to directly link the predictive value of an item during encoding to58

subsequentmemory. From the behavioral data alone (in which predictionwas not directlymeasured), it was59

unclear whether the memory impairment for the first item originated at the time of encoding or emerged60

in later stages such as consolidation or retrieval. For example, the first item might have been encoded well,61

but when this item was probed in the later memory test, its association with the second item interfered62

with recognition. Although an fMRI experiment provided some evidence of prediction during encoding —63

the category of the second item could be decoded during the first — the poor temporal resolution fMRI64

muddied this interpretation. The decoded neural signals were recorded during or after the second item65

and shifted backward in time based on assumptions about the hemodynamic lag. Methods with better66

temporal resolution could provide more precise linking between neural signals and experimental events,67

allowing for more direct measurement of predictions.68

Additionally, in our prior work, we only found a relationship between prediction and encoding across69

participants. Average fMRI evidence for the category of second items during first items was negatively70

associatedwith overall memory performance for first items. However, this could reflect a generic individual71

difference — that participants who make more predictions tend to have worse memory — rather than72

prediction having a mechanistic effect on encoding. According to the latter account, whether a participant73

remembers or forgets a given item should depend on whether that item triggered a prediction during its74

encoding. This requires testing for a relationship between prediction and encoding across items within75

participant. Time-resolved methods with denser sampling of individual trials could better enable trial-level76

estimates of prediction necessary for within-participant subsequent memory analyses.77

The present study addresses these issues to better establish predictive value as an encoding factor. We78

combine intracranial EEG (iEEG) with multivariate pattern analysis, allowing us to measure neural predic-79

tions in a time-resolved manner and link them to subsequent behavioral memory across trials. Epilepsy80

patients viewed a rapid stream of scene photographs across blocks of a statistical learning task. The scenes81

consisted of unique exemplars from various categories (e.g., beaches, mountains, waterfalls) that differed82

by block. In the Random blocks, the order of “control” (condition X) categories from which the exemplars83

were drawn was random. In the Structured blocks, the categories were paired such that exemplars from84

“predictive” (condition A) categories were always followed by exemplars from “predictable” (condition B)85

categories (Figure 1A). Patients were not informed of these conditions or the existence of category pairs,86

which they learned incidentally through exposure (Brady and Oliva, 2008). The items from each category87

were presented in sub-blocks that changed after four presentations (Figure 1B). After both blocks, patients88

completed a recognition memory test for the exemplars from the stream.89
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To track statistical learning in the brain, we employed neural frequency tagging (Batterink and Paller,90

2017; Choi et al., 2020; Henin et al., 2021). We quantified the phase coherence of oscillations at the fre-91

quency of individual items (present in both Random and Structured blocks) and at half of that frequency92

reflecting groupings of two items (present only in Structured blocks with category pairs). Tomeasure predic-93

tion during encoding, we used multivariate pattern similarity (Kok et al., 2014, 2017; Demarchi et al., 2019;94

Aitken et al., 2020). We first created a template pattern for each scene category based on the neural ac-95

tivity it evoked in visual contacts. We then quantified the expression of these categories during statistical96

learning, defining prediction as evidence for the second category in a pair evoked by items from the first97

category.98

Although the hippocampusmay be the nexus of competition between statistical prediction and episodic99

encoding (Schapiro et al., 2017; Sherman and Turk-Browne, 2020), hippocampal signalsmay be relayed and100

reinstated throughout the cortical hierarchy (Bosch et al., 2014; Tanaka et al., 2014; Danker et al., 2017;101

Hindy et al., 2016; Aitken and Kok, 2022; Clarke et al., 2022) and frequency tagging (Henin et al., 2021) in vi-102

sual cortex. This allowed us to test our hypotheses robustly in epilepsy patients whose clinical care resulted103

in extensive electrode coverage in visual cortex but not the hippocampus.104

In sum, by assessing iEEG signals during the rapid presentation of scenes, we measured the neural105

representations underlying statistical learning and prediction, and linked these online learning measures106

to offline memory, revealing how predictive value constrains memory encoding.107

Materials and Methods108

Participants109

We tested 10 participants (7 female; age range: 19-69) who had been surgically implanted with intracranial110

electrodes for seizure monitoring. Decisions on electrode placement were determined solely by the clinical111

care team to optimize localization of seizure foci. Participants were recruited through the Yale Comprehen-112

sive Epilepsy Center. Participants provided informed consent in a manner approved by the Yale University113

Human Subjects Committee.114

A summary of patient demographics, clinical details, and research participation can be found in Table 1.115

Given electrode coverage and usable data, we retained 9 patients in the behavioral analyses, 8 patients in116

the neural frequency tagging analyses, and 7 patients in the neural category evidence analyses.117

iEEG recordings118

EEG data were recorded on a NATUS NeuroWorks EEG recording system. Data were collected at a sampling119

rate of 4096 Hz. Signals were referenced to an electrode chosen by the clinical team to minimize noise in120

the recording. To synchronize EEG signals with the experimental task, a custom-configured DAQ was used121

to convert signals from the research computer to 8-bit “triggers” that were inserted into a separate digital122

channel.123

iEEG preprocessing124

iEEG preprocessing was carried out in FieldTrip (Oostenveld et al., 2011). A notch filter was applied to re-125

move 60-Hz line noise. No re-referencingwas applied, except for one patient, whose referencewas in visual126

cortex, resulting in a visual-evoked response in all electrodes; for this patient, we re-referenced the data to a127

whitematter contact in the left anterior cingulate cortex. Data were downsampled to 256Hz and segmented128

into trials using the triggers.129

Electrode selection130

Patients’ electrode contact locations were identified using their post-operative CT and MRI scans. Recon-131

structions were completed in BioImage Suite (Papademetris et al., 2006) and were subsequently registered132

to the patient’s pre-operativeMRI scan, resulting in contact locationsprojected into the patient’s pre-operative133

space. The resulting files were converted from the Bioimagesuite format (.MGRID) into native space coordi-134

nates using FieldTrip functions. The coordinates were then used to create a region of interest (ROI) in FSL135

(Jenkinson et al., 2012), with the coordinates of each contact occupying one voxel in the mask (Figure 2).136
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Figure 1. Task design. (A) Example scene category pairings for one participant. Three of 12 categories were assigned to

condition A. Each A category was reliably followed by one of three other categories assigned to condition B to create

pairs. The remaining six categories assigned to condition X were not paired. Participants viewed the A and B

(Structured) and X (Random) categories in separate blocks of the task. (B) Example stimuli from the Structured block.

Participants passively viewed a continuous stream of scenes. Each scene was shown for 267 ms, followed by an ISI of

267 ms with only a fixation cross on the screen. The stream was segmented into subblocks. The same exemplar of each

category was presented four times per subblock, and new exemplars were introduced for the next subblock. For the

Structured block, the category pairs remained consistent across subblocks. Category pairs are denoted by a colored

frame, corresponding to the A-B pairs (and colored arrows) in subpanel A.
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Table 1. Patient Information.

ID Age Sex nElec (vis) Implant Data Collected Notes

1 19 F 203(21) R G/S/D 2S, 2R R2 mem data not usable (D)

2 26 F 163(59) L G/S/D 2S, 2R –

3 43 F 172(10) Bi D 1S, 2R –

4 61 F 136(0) Bi D 1S, 1R neural mem data not usable (T)

5 31 M 152(31) L G/S/D 2S, 2R R1 encoding data not usable (T)

6 69 F 92(7) L D 2S, 2R –

7 33 M 232(22) Bi D 1S, 1R –

8 31 F 192(20) Bi D 2S, 2R no mem data collected (C)

9 56 F 192(36) Bi D 2S, 2R R1 encoding data not usable (T)

10 53 M 148(0) Bi D 2S, 2R –

Description of patient participation. ID: patient participation number. Age: in years. Sex: M = Male, F

= Female. nElec (vis): the total number of electrode contacts, followed by the number of visual electrode

contacts. Implant: R = right-sided implant; L = left-sided implant; Bi = bilateral implant; G = grid; S = strip; D =

depth. Data collected: the number of runs for each condition collected (S = Structured, R = Random). Notes:

which runs (if any) were excluded from given analyses and why. D = patient distraction (e.g., a clinician

coming in and disrupting testing); T = trigger issue (i.e., an error with the equipment such that we could not

align individual trials to our neural signal); C = computer error (e.g., the computer crashed).

For purposes of decoding scene categories, we were specifically interested in examining visually respon-137

sive contacts (Walther et al., 2009). We defined visual cortex on the MNI T1 2mm standard brain by combin-138

ing the Occipital Lobe ROI from the MNI Structural Atlas and the following ROIs from the Harvard-Oxford139

Cortical Structural Atlas: Inferior Temporal Gyrus (temporoocipital part), Lateral Occipital Cortex (superior140

division), Lateral Occipital Cortex (inferior division), Intracalcarine Cortex, Cuneal Cortex, Parahippocam-141

pal Gyrus (posterior division), Lingual Gyrus, Temporal Occipital Fusiform Cortex, Occipital Fusiform Gyrus,142

Supracalcarine Cortex, Occipital Pole. Each ROI was thresholded at 10% and then concatenated together to143

create a single mask of visual cortex.144

To identify which contacts to include in analyses on a per-patient basis, this standard space visual cor-145

tex mask was transformed into each participant’s native space. We registered each patient’s pre-operative146

anatomical scan to theMNI T1 2mmstandardbrain template using linear registration (FSL FLIRT (Jenkinson and Smith,147

2001; Jenkinson et al., 2002)) with 12 degrees of freedom. This registration was then inverted and used to148

bring the visual cortex mask into each participant’s native space.149

In order to ensure that the visual cortex mask captured the anatomical areas we intended, we manually150

assessed its overlap between the electrodes and made a few manual adjustments to the electrode defini-151

tion. For example, due to noise in the registrations between post-operative and pre-operative space, as well152

as from pre-operative space and standard space, some grid and strip contacts appeared slightly outside of153

the brain, despite being on the surface of the patient’s brain. Thus, contacts such as these were included as154

“visual” even if they were slightly outside of the bounds of the mask. Additionally, due to the liberal thresh-155

olds designed to capture broad visual regions, some portions of the parahippocampal gyrus area contained156

the hippocampus. Contacts within mask boundaries but clearly in the hippocampus were excluded.157

Experimental Design158

Participants completed the experiment on aMacBook Pro laptopwhile seated in their hospital bed. The task159

consisted of up to four runs: two runs of the Structured block and two runs of the Random block. We aimed160

to collect all four runs from each patient, but required a minimum of one run per condition for subject161

inclusion. Given that the order of structured vs. random information can impact learning (Jungé et al.,162

2007; Gebhart et al., 2009), the run order was counterbalanced within and across participants (i.e., some163

participants received Structured-Random-Random-Structured and others Random-Structured-Structured-164
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Figure 2. Electrode coverage. The contact locations on the grid, strip, and/or depth electrodes for each participant are

plotted as circles in standard brain space. Contacts colored in blue were localized to the visual cortex mask.
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Random). Participants completed the runs across 1-3 testing sessions based on the amount of testing time165

available between clinical care, family visits, and rest times.166

Each run consisted of an encoding phase and amemory phase. During the encoding phase, participants167

viewed a rapid stream of scene images, during which they were asked to passively view the scenes. Partici-168

pants were told that their memory for the scenes would be tested in order to encourage them to pay close169

attention. Each scene was presented for 267 ms, followed by a 267 ms inter-stimulus interval (ISI) period170

duringwhich a fixation cross appeared in the center of the screen. These short presentation timeswere cho-171

sen to optimize the task for the frequency tagging analyses, which involves measuring neural entrainment172

to stimuli.173

Within each run, participants viewed a series of images from a set of six scene categories. There were174

six categories in the Structured block, and six other categories in the Random block. In the Structured block,175

the scenes categories were paired, such that images from one scene category (A) were always followed by176

an image from another scene category (B). Thus, A scenes were predictive of the category of the upcoming177

B scenes, or stated another way, the category of B scenes was predictable given the preceding A scenes.178

No scene pairs were allowed to repeat back-to-back in the sequence. In the Random block, all six scene179

categories (X) could be preceded or followed by any other scene category, making them neither predictive180

nor predictable. No individual scene categories were allowed to repeat back-to-back.181

In total, participants viewed 16 exemplars from each category within each run. To assist patients with182

remembering these briefly presented images, each individual exemplar was shown four times within a run.183

Thus, each run was comprised of 16 “subblocks” during which the same set of six exemplar images was184

repeated four times (384 trials total). Within each subblock, the order of the pairs/images was randomized,185

with the constraints describedabove of no back-to-back repetitions. The individual exemplars changedafter186

each subblock, but the category relations were held constant in the Structured block. Participants were not187

informed of these category pairings, and thus had to acquire them through exposure.188

At the end of each run, participants completed a memory test. Participants were presented with all189

96 unique images from the encoding phase, intermixed with 24 novel foils from the same categories (4190

foils/category). Participants first had to indicate whether the image was old, meaning it was just presented191

in that run’s encodingphase, or new,meaning that they hadnot seen that imageat all during the experiment.192

Following their old/new judgment, participantswere asked to indicate their confidence in their response, on193

a scale of 1 (very unsure) to 4 (very sure). Participants had up to 6 s to make each old/new and confidence194

judgment. We quantified episodic memory performance using A
′
, a non-parametric measure which takes195

into account hit rate (HR) and false alarm rate (FA) (Grier, 1971):196

𝐴′ = .5 + (𝐻𝑅 − 𝐹𝐴) ∗ (1 +𝐻𝑅 − 𝐹𝐴)∕(4 ∗ 𝐻𝑅 ∗ (1 − 𝐹𝐴))

Frequency tagging analyses197

Weconducted a phase coherenceanalysis to identify electrode contacts that entrained to imageandpair fre-198

quencies (Henin et al., 2021). For both Structured and Random blocks, the raw signals were concatenated199

across runs (if more than one per block type) and then segmented into subblocks comprising 24 trials with200

the four repetitions per exemplar. We then converted the raw signals for each subblock into the frequency201

domain via fast Fourier transform and computed the phase coherence across subblocks for each electrode202

using the formula 𝑅2 = [Σ𝑁𝑐𝑜𝑠𝜙]2 + [Σ𝑁𝑠𝑖𝑛𝜙]2. Notably, by computing phase coherence between subblocks,203

we collapsed over the contribution of individual exemplars that repeated within subblock. In other words,204

entrainment in this analysis was driven by phase-locking that generalized across exemplars. Phase coher-205

ence was computed separately for each contact in the visual cortex mask, and we then averaged across206

contacts within participant. We focused on phase coherence at the frequency of image presentation (534207

ms/image; 1.87 Hz) and pair presentation (1.07 s/pair; 0.93 Hz).208

Category evidence analyses209

We employed a multivariate pattern similarity approach to assess the timecourse of category responses.210

We identified patterns of multivariate activity associated with each category across contacts, frequencies,211
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and time. These category patterns, or “templates”, were defined during the memory phase of the dataset.212

This was important because the order of categories was random during the memory phase, allowing for213

an independent assessment of each category across condition regardless of any pairings. We then used214

these templates to examine category-specific evoked responses during the encoding phase, to assess the215

presence and timing of category evidence (e.g., for the on-screen category or the upcoming category). The216

following subsections explain this approach in detail.217

Frequency decomposition218

WeemployedaMorletWavelet approachto decompose rawsignals into time-frequency information (Figure 3A).219

We convolved our data with a Complex Morlet Wavelet (cycles = 4) at each of 50 logarithmically spaced220

frequencies between 2 and 100 Hz to extract the power timecourse at each of these 50 frequencies. This221

analysiswas done separately for each encoding andmemory phase of each run, and the data were z-scored222

across time within each frequency and contact. This procedurewas applied across the unsegemented time-223

courses; we then subsequently carved into trials using the triggers, yielding a vector of frequency and con-224

tact information at each timepoint within a trial.225

Subsequent analyses required that each trial have the same number of timepoints. However, memory226

trials were variable lengths, as participants had up to 6 s to respond. There was also slight variability in the227

encoding trials (most trials were 138 samples long, but some were 136 or 137 samples). To account for this,228

we considered only the first 138 samples of each memory trial and treated each encoding trial as having229

138 samples (interpolatingmissing timepoints by averaging the last sample of the trial with the first sample230

of the next trial).231

Category decoding232

First, we verified that the multivariate patterns contained category-specific information. We constructed a233

set of 30 binary classifiers to distinguish among two categories of a given condition (Figure 3B): A1-A2, A1-A3,234

A1-B1, A1-B2, A1-B3, A2-A3, A2-B1, A2-B2, A2-B3, A3-B1, A3-B2, A3-B3, B1-B2, B1-B3, B2-B3, X1-X2, X1-X3, X1-235

X4, X1-X5, X1-X6, X2-X3, X2-X4, X2-X5, X2-X6, X3-X4, X3-X5, X3-X6, X4-X5, X4-X6, X5-X6. We employed a linear236

support vector machine approach using the SVC function in Python’s scikit-learn module, with a penalty237

parameter of 1.00. We used all of the trials (both old and new exemplars of a category) from the memory238

runs to train and test the classifiers and build the subsequent category templates. Thus, there were 20239

samples per category for participants who had one run of a condition and 40 samples per category for240

participants who had two runs of a condition. We split these samples into two-thirds training and one-third241

test (all within the memory phase), and iterated over the three train-test splits.242

First, we independently trained classifiers on a single timepoint (each of the 138 timepoints within a trial)243

and tested each classifier on all 138 timepoints at test. To validate that we were able to discriminate the244

categories above chance, we averaged over all train-test combinations and computed overall classification245

accuracy.246

Feature selection247

We next aimed to identify the set of timepoints that produced the best category discrimination. We rea-248

soned that time within a trial would be an important contributor to variance in discriminability, as we would249

not necessarily expect that timepoints very early on in a trial (immediately after imageonset) would produce250

high discrimination between categories. We also reasoned that the best timepoint(s) may differ from par-251

ticipant to participant depending on their electrode coverage. Therefore, we devised a participant-specific252

timepoint feature selection process. Importantly, these feature selection steps were conducted within the253

memory phase data (the same data on which the templates were trained), which were independent of the254

test data of interest (encoding phase data).255

Using the classifier output described above, we averaged the classification over the 138 test timepoints256

to assess how well training at every timepoint generalized to all other timepoints within a trial. We con-257

ducted this analysis for all 30 classifiers and averaged performance over classifiers, yielding a mean classi-258

fication performance associated with each training timepoint. For each participant, we then computed the259
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Figure 3. Category evidence analysis pipeline. (A) A Morlet wavelet approach was used to extract time-frequency

information from contacts in visual cortex. This resulted in contact by frequency vectors for every timepoint of

encoding phase and memory phase trials, which served as the neural patterns for subsequent analysis steps. (B) To

identify the neural patterns that distinguished between categories, we ran a series of binary classifiers for every pair of

categories from the memory phase trials. These classifiers were trained on the contact by frequency vectors for a single

timepoint or set of timepoints. The classifiers were then tested on timepoints from held-out data. (C) After a series of

feature selection steps, we chose the per-participant top-N timepoint set that produced the best classification accuracy,

and then averaged contact by frequency vectors across those timepoints (across all exemplars of a given category) to

create a “template” of neural activity for each category. (D) We then correlated the template for each category from the

memory phase with the contact by frequency vector at each timepoint of each trial/exemplar from that category during

the (independent) encoding phase, yielding a timecourse of pattern similarity reflecting neural category evidence.
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rank order of timepoints with respect to their classification, such that the first ranked timepoint was the260

one that yielded the highest classification, and the last ranked (138th) timepoint is the one that yielded the261

lowest classification.262

To identify the set of training timepoints producing the best category classification for a given participant,263

we repeated the pairwise classification procedure above iteratively training on an increasing number of264

timepoints, adding from highest to lowest ranked. Thus, these classifiers ranged from training on the single265

top timepoint, to all 138 timepoints. We again conducted this analysis for all 30 classifiers and averaged266

performance across them, yielding amean classification performance associatedwith the 138 sets of top-N267

timepoints. We ranked this classification performance again to determine which number of top timepoints268

produced the highest classification. This number was used to define the templates.269

Template correlations270

Using the set of training timepoints for eachparticipantdetermined in the feature selectionprocess,we then271

computed a neural template for each category (Figure 3C). We extracted the pattern of activity (i.e., a vector272

containing electrode contact, time, and frequency) for all instances of a given category during the memory273

phase, including both old and new images. We then averaged over the timepoints in that participant’s274

training set. The resulting category pattern vector retained spatial (contact) and frequency information.275

To assess the timecourse of neural evidence for a category during the encoding phase, we extracted276

the pattern of activity (contact and frequency) for each timepoint of every trial of that category (Figure 3D).277

We computed the Pearson correlation between the template and the activity pattern separately for each278

timepoint within a trial, yielding a timecourse of similarity to the template. The resulting Pearson correlation279

values were Fisher transformed into z values.280

We were interested in characterizing the timecourse of a category response not only while that category281

was on the screen, but also during the surrounding trials. We may observe evidence for a category before282

it appears, if it can be predicted (as hypothesized for B), or after it disappears, if its representation lingers.283

Thus, we assessed the timecourse over a window comprising the on-screen category’s trial (“Current”) and284

the two neighboring trials (“Pre” and “Post” trials). To quantify the response, we subtracted a baseline of285

average evidence for the other categories of the same condition (e.g., for category A1, how much evidence286

is there for A1 relative to categories A2 and A3?). For the X categories, which could appear in any order, we287

ensured that the categories included in the baseline did not appear during the “Pre” and “Post” trials. This288

baselining approach was important for ensuring that effects were not driven by a generic evoked response289

(to any category), but rather by specific evidence for the relevant category.290

We quantified how template similarity changed over time within trial by splitting the trials into “ON” and291

“ISI” epochs. The ON epoch refers to the part of the trial when the image was on the screen (the first 69292

samples, or 267ms). The ISI epoch refers to the part of the trial after the image disappeared from the screen293

during the inter-stimulus fixation cross (the second 69 samples, or latter 267 ms).294

Subsequent memory295

To assess how variance in category evidence across trials related to memory outcomes for those trials,296

we examined predictive and on-screen representations separately for subsequently remembered versus297

forgotten trials. We conducted this analysis separately formemory of A (as a function of Perceived evidence298

for A during A and Predicted evidence for B during A) and for memory of B (as a function of Perceived299

evidence for B during B and Predicted evidence for B during A). Because each image was shown four times,300

we first averaged the Perceived and Predicted evidence over these four trials. We considered the ISI epoch301

of each trial, as this was the epoch in which we observed reliable evidence for the Predicted category B302

during A. As a control analysis, we repeated these steps for the X trials from the Random blocks.303

Alternative classification approaches for feature selection304

The category evidence analyses described above rely on a set of binary classifiers trained to distinguish the305

categories in a given condition (i.e., all combinations of As and Bs in the Structured condition and Xs in the306

Random condition). However, this approachmay lead to interpretational issues. For example, from a binary307
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classifier trained to distinguish two categories (e.g., A1 vs. B1), it is difficult to know whether evidence for308

one category (e.g., A1) reflects the presence of that category (A1) or the absence of the other category (B1).309

Thus, we replicated all of the above analyses using two alternative approaches.310

First, we trained a 6-way classifier to distinguish among all six categories of a given condition (A1-A2-311

A3-B1-B2-B3 for Structured and X1-X2-X3-X4-X5-X6 for Random). By including more than two classes, this312

approach addresses the concern that classification accuracy could be driven by the presence or absence313

of a given category. Second, we retained the binary classification approach but trained classifiers to only314

discriminate within the A or B categories. That is, instead of 15 classifiers for A/B combinations, there were315

6 classifiers (A1-A2, A1-A3, A2-A3, B1-B2, B1-B3, B2-B3). This approach ensures that classification does not316

mix evidence for predictive vs. predicted categories.317

For both of these approaches, we employed a linear support vector machine approach using the SVC318

function in Python’s scikit-learnmodule, with a penalty parameter of 1.00 (sameas the primary classification319

approach). We then repeated the same feature selection steps using these alternative classifiers, and used320

the output of the top-N timepoint analyses to create new templates.321

Statistical analysis322

For all analyses (both behavioral and neural), statistical significance was assessed using a random-effects323

bootstrap resampling approach (Efron and Tibshirani, 1986). For each of 10,000 iterations, we randomly324

resampledparticipantswith replacement and recomputed themean across participants, to populate a sam-325

pling distribution of the effect. This sampling distribution was used to obtain 95% confidence intervals and326

perform null hypothesis testing. We calculated the p-value as the proportion of iterations in which the re-327

sampledmeanwas in the wrong direction (opposite sign) of the truemean; we then multiplied these values328

by 2 to obtain a two-tailed p-value. All resampling was done in R (version 3.4.1), and the random number329

seed was set to 12345 before each resampling test. This approach is designed to assess the reliability of330

effects across patients: a significant effect indicates that which patients were resampled on any given itera-331

tion did not affect the result, and thus that the patients were interchangeable and the effect reliable across332

the sample.333

Results334

Memory behavior335

We first assessed overall performance in the recognition memory test to verify that participants were able336

to encode the images into memory. We computed A
′
, a non-parametric measure of sensitivity (Grier, 1971),337

from test judgments for items fromboth StructuredandRandomblocks. All participantshad anA
′
above the338

chance level of 0.5 (mean = 0.68; 95% CI = [0.64, 0.70], p <0.001; Figure 4A) indicating reliable memory. This339

was driven by a higher hit rate (mean = 0.51) than false alarm rate (mean = 0.32; difference 95% CI = [0.14,340

0.23], p <0.001). The proportions of items that were subsequently remembered (hit rate) or forgotten (1-hit341

rate, or misses) were roughly matched on average, yielding balanced power for within-subject subsequent342

memory analyses.343

We then assessedhowstatistical learningaffected recognitionmemory. Basedonour priorwork (Sherman and Turk-Browne,344

2020), we hypothesized that the hit rate for items from the predictive A categories in the Structured blocks345

would be lower than the hit rate for items from the control X categories in the Random blocks. Indeed, we346

replicated this key behavioral finding (Figure 4B), with a significantly lower hit rate for A (mean = 0.48) than347

X (mean = 0.52; difference 95% CI = [-0.076, -0.010], p = 0.012). The hit rate for B (mean = 0.51) did not differ348

from A (difference 95% CI = [-0.10, 0.059], p = 0.51) or X (difference 95% CI = [-0.094, 0.053], p = 0.66).349

The false alarm rate for X (mean = 0.36) was numerically higher than A (mean = 0.28; difference 95%350

CI = [-0.0023, 0.16], p = 0.064); X was significantly higher than B (mean = 0.29; difference 95% CI = [0.0069,351

0.13], p = 0.028), though A and B did not differ (difference 95% CI = [-0.074, 0.056], p = 0.82). Unlike the352

higher hit rate for X than A, which was specifically hypothesized based on prior work, the marginally higher353

false alarm rate for X than A was not expected or consistent with previous experiments. Nevertheless, this354

complicates interpretation of the hit rate difference as impaired memory for A vs. X. One difference from355
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Figure 4. Behavioral results. (A) Overall memory performance collapsed across conditions. A
′
(a sensitivity measure for

recognition memory) is depicted for each participant as a circle. All participants were above chance (0.5). (B) Hit rate as

a function of condition (A: predictive; B: predictable; X: control). Group means are plotted as bars, with errors bars

representing the bootstrapped 95% confidence interval across participants. Individual participant data are overlaid with

the grey circles and lines.

the prior study is the blocking of Structured (A,B) and Random (X) categories, which may have allowed for356

differences in strategy or motivation between conditions. Nevertheless, the main memory hypotheses in357

the current study rest within the A condition (i.e., which A items are remembered vs. forgotten as a function358

of B prediction), rather than on overall condition-wide differences with X (or B).359

We additionally examined the timecourse of these memory effects by sorting the items into subblocks.360

If the deficit in memory for A items arises from the predictive value that they confer, we might expect361

that this effect will emerge over time as learning occurs (Sherman and Turk-Browne, 2020). We focused362

this analysis on the first Structured run of the encoding phase for each participant, in order to equate the363

amount of data and corresponding opportunity for learning across participants (some had one run, others364

two). We quantified change over time for each participant as the Spearman rank correlation of subblock365

number with hit rate for A (averaged across items in each subblock), expecting a negative correlation. The366

resulting within-participant relationship was not reliable at the group level (mean rho = -0.038; 95% CI =367

[-0.27, 0.19], p = 0.77). This null effect of a learning trajectory stands in contrast with what we observed in368

Sherman and Turk-Browne (2020), perhaps related to the smaller number of participants or differences in369

task design (e.g., the use of ’subblocks’) in the current study.370

Neural frequency tagging371

To provide a neural check of statistical learning of the category pairs in the Structured blocks, we measured372

entrainment of neural oscillations in visual electrode contacts to the frequency of individual images and373

image pairs (Figure 5A). We expected strong entrainment at the image frequency in both the Structured and374

Random blocks, as this reflects the periodicity of the sensory stimulation. Critically, we hypothesized that375

there would be greater entrainment at the pair frequency in Structured compared to Random blocks. This376

provides a measure of statistical learning because the pairs only exist when participants extract regularities377

over time in the transition probabilities between categories in the Structured blocks.378

Consistent with our hypotheses and prior work (Henin et al., 2021), there were distinct peaks in phase379

coherence at both the image and pair frequencies in Structured blocks, but only at the image frequency in380

Random blocks (Figure 5B). To confirm the reliability of these peaks, we contrasted the coherence at the381
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Figure 5. Neural frequency tagging analysis. (A) Schematic of analysis and hypothesized neural oscillations. We expect

entrainment of visual contacts at the frequency of images in both blocks. In the Structured block, we also expect

entrainment at the frequency of category pairs. (B) These hypotheses were confirmed, with reliable peaks in coherence

at the image and pair frequencies in Structured blocks but only at the image frequency in Random blocks. (C) We

examined the emergence of entrainment over time by measuring the difference in coherence at the frequency of

interest, relative to the two neighboring frequencies, as we iteratively increased the number of subblocks from the start

of the run included in the analysis. Left: Coherence at the pair frequency emerged over time in the Structured block

(reaching significance by the 13th subblock and beyond) but not in the Random block. Right: Coherence at the image

frequency was high in both blocks, regardless of how many subblocks were included. Error bands indicate the 95%

bootstrapped confidence intervals across participants.

13



frequency of interest (image: 1.87 Hz; pair: 0.93 Hz) against a baseline of the coherence at frequencies382

neighboring each of the frequencies of interest (±0.078 Hz). At the image frequency, there were reliable383

peaks in both the Structured (mean difference = 0.46; 95% CI = [0.37, 0.55], p <0.001) and Random blocks384

(mean difference = 0.42; 95% CI = [0.28, 0.52], p <0.001). At the pair frequency, there was a reliable peak385

in Structured blocks (mean difference = 0.059; 95% CI = [0.035, 0.084]), p <0.001), but not Random blocks386

(mean difference = -0.0027; 95% CI = [-0.016, 0.0085], p = 0.68).387

Further, the peak in coherence at the pair frequency in Structured blocks was reliably higher than that in388

Random blocks (mean difference = 0.058; 95% CI = [0.035, 0.083], p <0.001), confirming the pair frequency389

effect was specific to when there was structure in the sequence. There were no differences in coherence at390

the image frequency across conditions (meandifference= 0.018; 95%CI = [-0.010, 0.048],p = 0.25). Together,391

these results provide strong evidence that visual regions represented the paired categories during statistical392

learning.393

Tomeasure the emergence of these entrainment effects over time, we computed the coherence over an394

iteratively increasingnumberof subblocks (Henin et al., 2021). Specifically,we first computed the coherence395

across the first two subblocks, then the first three, and so on, up to all 16 subblocks. As in the behavioral396

timecourse analyses, we only included the first 16 subblocks per participant (corresponding to the first run397

of a given condition) in order to equate the opportunity for learning effects across participants. To quantify398

neural entrainment, we computed the difference in coherence between the frequency of interest and the399

two neighboring frequencies (as we did above to establish whether peaks were reliable). We then assessed400

the reliability of that difference, relative to 0, acrossparticipants. Wehypothesized that coherenceat the pair401

frequency would emerge over time in the Structured condition, but that coherence at the image frequency402

would be consistently high, even at early timepoints.403

In the Structured condition, the pair frequency was consistently reliable by the 13th subblock (mean ITC404

difference = 0.035; 95% CI = [0.0011, 0.071], p = 0.043), with each subsequent subblock also exhibiting a405

reliable peak in coherence at the pair frequency (ps <0.001; Figure 5C, left). Confirming that this effect was406

specific to the Structured condition, we did not find reliable peaks in coherence at the pair frequency across407

any number of subblocks in the Random condition (ps >0.30).408

In contrast to the pair frequency that required learning, the image frequency should be driven by the409

stimuli and thus present early in both conditions. Indeed, coherence at the image frequency was reli-410

ably high across all numbers of subblocks, in both the Structured and Random conditions (all ps <0.001;411

Figure 5C, right). This lends credence to the interpretation of increasing coherence at the pair frequency412

over time as reflecting a trajectory of learning.413

Given our interpretation that entrainment to the pair frequency reflects statistical learning, and given414

that we expect our key behavioral effect (impaired memory for predictive A items) to depend on statisti-415

cal learning, we next asked whether these two effects are related. We calculated this relationship within-416

participant given the small sample for estimating across-participant relationships. Coherence is necessarily417

measured across trials, and thus we could not relate entrainment on a given trial to memory for that trial.418

Instead, we computed coherence across neighboring subblocks and estimated neural entrainment to the419

pairs as the difference in coherence at the pair frequency from the two adjacent frequencies. We then420

related this neural measure to average A hit rate within the latter of the two neighboring subblocks, expect-421

ing a negative relationship (stronger pair entrainment associated with worse A memory). For example, the422

coherence between subblocks 1 and 2 was used to predict behavioral memory in subblock 2 (memory in423

subblock 1 was excluded from this analysis). The within-participant relationship between neural entrain-424

ment to pairs and A memory showed a trend at the group level (mean rho = -0.13; 95% CI = [-0.25, 0.020], p425

= 0.089), though importantly 6/7 participants showed a negative correlation. We repeated this analysis for426

the image frequency as a control, and found no relationship between neural entrainment to images and A427

memory (mean rho = -0.072; 95% CI = [-0.24, 0.087], p = 0.42).428

Scene category decoding and template creation429

The neural frequency tagging for pairs in Structured blocks indicates statistical learning of the pairs. This430

learning should create predictive value for the items from the A categories, which afford a prediction of431
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Figure 6. Category decoding and feature selection. (A) To establish overall category decoding accuracy, we trained and

tested binary category classifiers separately for all individual timepoints, yielding a temporal generalization matrix. (B)

As a first feature-selection step, we computed the average classification accuracy (across pairwise classifiers) for each

training timepoint and participant (colored lines). We then ranked the timepoints by classification accuracy. (C) To select

the set of timepoints that produced the best classification for a given participant, we trained and tested the category

classifiers on an increasing number of timepoints, starting with the best-performing timepoint identified in (B) and

iteratively adding timepoints by rank. We then computed the per-participant average classification accuracy for each

set of timepoints. (D) Histogram depicting which training timepoints were selected for template creation for all

participants (e.g., count = 3 indicates that that timepoint was included for 3 of the 7 participants).

the associated B category. To test for these predictive representations, we employed amultivariate pattern432

similarity approach that extracted neural evidence for visual categories. For each category, we created a433

neural template based on the pattern of time-frequency information evoked by each category across visual434

contacts. These templates were optimized through a series of a steps (describedbelow) for each participant435

to ensure maximum category discriminability.436

First, to verify that the scene categories were indeed discriminable, we developed a series of binary clas-437

sifiers to distinguish among the scene categories. Because we were interested in ultimately selecting the438

timepoints that produced the best category discrimination,we trained classifiers on a single timepoint (each439

of the 138 timepoints within a trial) and tested each classifier on all 138 timepoints at test. Figure 6A illus-440

trates the classification performance across all of these binary classifiers, averaged across participants. At441

the group level (averaging across all train-test combinations), classification performance was above chance442

(mean = 0.528; 95% CI = [0.514, 0.542], p <0.001), with each individual participant exhibiting classification443

performance greater than the chance level of 0.5.444

We next aimed to select the training timepoints (per participant) that exhibited the best category dis-445

crimination. For each participant and training timepoint, we averaged classification accuracy across all test446
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timepoints (Figure 6B). We then ranked the training timepoints by classification accuracy. Next, to find the447

set of training timepoints that produced the best classification, we re-ran our classification procedure, but448

training on an increasing number of timepoints, starting with the best-performing timepoint, and iteratively449

adding timepoints per rank. We then computed the per-participant average classification accuracy for each450

set of timepoints Figure 6C). Verifying that this feature selection approach worked to optimize category dis-451

criminability, we indeed found that using the per-participant top-N timepoints yielded higher classification452

accuracy than averaging across all timepoints (mean accuracy = 0.554; 95% CI = [0.536, 0.571], p <0.001);453

this was independently true for each participant.454

We used these per-participant top-N timepoints to create templates of each category. Figure 6D illus-455

trates the training timepoints which were included in the templates, for one or more participants. To con-456

struct the templates, we averaged the contact-by-frequency vectors across the top-N timepoints for all ex-457

emplars of a given category. We then aimed to quantify the expression of these category templates during458

learning (e.g., during the presentation of a predictive A item, is there a representation of the upcoming459

B item?). However, given that these templates were created from the memory phase, after learning had460

already occurred, it is important to ensure that the templates of paired categories themselves were not461

correlated with each other; if so, any effects of prediction during learning could be confounded. At the462

group level, the templates of paired categories (e.g., A1-B1) were no more correlated than the templates of463

unpaired Structured categories (e.g., A1-B2; mean difference = 0.024; 95% CI = [-0.019, 0.069], p = 0.30) or464

Random categories (e.g., X1-X2; mean difference = 0.047; 95% CI = [-0.032, 0.127], p = 0.25).465

Category evidence during learning466

To test for evidence of predictive value, we quantified the expression of these templates in the Structured467

and Random blocks. As a check, we expected clear neural evidence for the category of the item being pre-468

sented on the screen. Critically, we hypothesized that neural evidence for the upcoming B category would469

manifest before its appearance, in response to an A exemplar. We measured these temporal dynamics of470

neural category evidence by creating a window of three trials centered on the current item: the trial preced-471

ing a trial in which the item appeared (“Pre”), the trial during which the item was on the screen (“Current”),472

and the trial succeeding the trial in which the item appeared (“Post”). For example, if category Pair 1 involved473

beaches (A1) being followed by mountains (B1), neural evidence for the mountain category was calculated474

in response to beach exemplars (Pre), mountain exemplars (Current), and exemplars from the categories475

that could appear next in the Structured sequence (A2 or A3 categories). These evidence values were aver-476

aged across the categories from the same condition (e.g., B1, B2, and B3 for condition B) and plotted over477

time (Figure 7A). For statistical analysis, we averaged the neural category evidence for each category across478

the timepoints within 6 epochs: when Pre, Current, and Post images were on the screen (“ON”) and dur-479

ing the fixation period between these trials (“ISI”; Figure 7B). We anticipated the evoked response to each480

image would span ON and ISI periods (as neural processing of the image would take longer than 267 ms),481

but subdividing in this way allowed us to test for the emergence of predictive evidence of B during the ISI482

immediately prior to its onset.483

For Current trials (i.e., the trial when the target category was on screen), we found robust (perceptual)484

evidence for both A and B across both the ON epoch (A: mean = 0.0088; 95% CI = [0.0046, 0.013], p <0.001;485

B: mean = 0.012; 95% CI = [0.0066, 0.018], p <0.001) and ISI epoch (A: mean = 0.012; 95% CI = [0.0084,486

0.015], p <0.001; B: mean = 0.014; 95% CI = [0.0083, 0.019], p <0.001). Neural evidence for X categories487

from Random blocks was not reliable during the ON epoch (mean = 0.0046, 95% CI = [-0.00075, 0.012], p488

= 0.13) but became robust later in the trial during the ISI epoch (mean = 0.0074; 95% CI = [0.0030, 0.013],489

p <0.001). There was greater evidence for B than X categories during both ON (mean difference = 0.0077;490

95% CI = [0.00058, 0.015], p = 0.031) and ISI epochs (mean difference = 0.0065; 95% CI = [0.00061, 0.012], p491

= 0.031). Considering X as a baseline, this difference shows enhanced perceptual processing of predictable492

categories. Neural evidence did not differ between A and B categories (ps >0.38) or A and X categories (ps493

>0.28).494

For Pre trials (i.e., the trial before the target category appeared), we found the hypothesized predictive495

neural evidence for the B categories during the ISI epoch (just after its paired A category appeared; mean =496
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Figure 7. Neural category evidence. (A) Time course of similarity between patterns of neural activity in visual contacts

evoked by exemplars from A (predictive), B (predictable), and X (control) categories and category template patterns for

A, B, and X, respectively, baselined to average evidence for the other categories of the same condition. Inset shows raw

pattern similarity before baseline subtraction for the category template of interest (dark) and the average of the other

category templates from the same condition (light). Error bands were removed for ease of visualization. Current refers

to the trial when the item was presented, Pre refers to the trial before the item was presented, and Post refers to the

trial after the item was presented. For each row/condition, the Pre, Current, and Post trials are compared to the same

category template (Current). Error bands reflect the bootstrapped 95% confidence intervals across participants (i.e., any

timepoint whose band excludes 0, p <0.05). (B) Average pattern similarity collapsed across timepoints within ON

(stimulus on screen) and ISI (fixation between stimuli) epochs. Each dot represents an individual participant. Bars

represent the means across participants and error bars indicate the bootstrapped 95% confidence intervals. *p <0.05;

**p <0.01; ***p <0.001
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0.0037; 95%CI = [0.00054, 0.0071], p = 0.019). B evidencewas not present during the ON epoch earlier in the497

Pre trials (while its paired A category was on screen; mean = 0.00063; 95% CI = [-0.0030, 0.0046], p = 0.78);498

this may reflect the time needed for associative reactivation of the B category after perceptual processing of499

the A item, or anticipation of the timing when B will appear (at the end of the Pre trial). Further supporting500

our interpretation that Pre evidence of the B categories reflects prediction, no such evidence was observed501

for X during ON (mean = -0.0015; 95% CI = [-0.0039, 0.0012], p = 0.26) or ISI epochs (mean = -0.00031; 95%502

CI = [-0.0021, 0.0015], p = 0.73) or for A during the ISI epoch (mean = -0.0012; 95% CI = [-0.0048, 0.0025], p =503

0.53). There was negative evidence for the upcoming A category during the ON epoch of the Pre trial (mean504

= -0.0043; 95% CI = [-0.0072, -0.0013], p = 0.0052), but this may have been artifactual (see below). When505

contrasting prediction-related signals across conditions, Pre neural evidence for the B categories during506

the ISI epoch was reliably greater than X categories (mean difference = 0.0040; 95% CI = [0.00016, 0.0075],507

p = 0.042) and marginally greater than A categories (mean difference = 0.0049; 95% CI = [-0.00051, 0.010],508

p = 0.075).509

For Post trials (i.e., the trial after the target category appeared), we found reliable neural evidence for510

the A categories during the ON epoch (i.e., while its paired B category was on screen; mean = 0.0055; 95%511

CI = [0.0017, 0.0091], p = 0.0018); this effect was not significant during the ISI epoch (mean = 0.0041; 95%512

CI = [-0.0011, 0.0098], p = 0.13). We did not find Post evidence of B or X categories during either ON or ISI513

epochs (ps >0.80), nor was Post evidence for A reliably stronger than B or X (ps >0.16). Positive evidence of A514

during the Post trial may be related to the negative evidence of A during the Pre trial noted above. Because515

no back-to-back pair repetitions were allowed, in an A1-B1-A2-B2 trial sequence, A1 and A2 were different516

categories. A1 evidence during B1 was considered a Post trial for the A condition, whereas A2 evidence517

during B1 was considered a Pre trial for the A condition. Because A1 was one of two baseline categories for518

A2 (along with the third A category, A3), Post evidence for A1 during B1 would have been subtracted from519

Pre evidence for A2, leading to a negative effect. We tested this by comparing evidence for A2 (Pre) and A1520

(Post) during B1 to the neutral A3 only. This weakened the negative Pre evidence for A, during ON (mean =521

-0.0027; 95% CI = [-0.0054, 0.00], p = 0.058) and ISI epochs (mean = 0.00048; 95% CI = [-0.0022, 0.0038], p =522

0.82). However, the positive Post evidence for A during the ON epoch remained significant (mean = 0.0081;523

95% CI = [0.0036, 0.014], p <0.001).524

The findings above rely on category templates optimized based on a set of binary category classifiers.525

To ensure that our results are robust to these specific feature selection steps, we re-ran our analyses using526

two different approaches for template creation.527

First, we created category templates from a 6-way classifier that simultaneously learned to distinguish528

the patterns from all categories of a condition. As a check, we first confirmed that this method produced529

the same results for Current items. Indeed, as above, we found reliable evidence for both A and B items,530

during the ON (A: mean = 0.0095; 95%CI = [0.0056, 0.014], p <0.001; B: mean = 0.015; 95%CI = [0.010, 0.019],531

p <0.001) and ISI periods (A: mean = 0.010; 95% CI = [0.0060, 0.014], p <0.001; B: mean = 0.014; 95% CI =532

[0.0085, 0.019],p <0.001); evidence for Xwas reliableduring the ISI (mean = 0.0059; 95%CI = [0.0026, 0.0099],533

p <0.001), but notONperiods (mean= 0.0037; 95%CI = [-0.0026, 0.012],p = 0.32). Critically, we replicatedour534

key finding of predictive B evidence during the Pre-ISI period (i.e., just after its paired A category appeared;535

mean = 0.0035; 95% CI = [0.00042, 0.0066], p = 0.025), as well as of lingering A evidence during the Post-ON536

period (i.e., while its paired B category was on screen; mean = 0.0049; 95% CI = [0.000059, 0.0095], p =537

0.049).538

Second, we retained the binary classification approach but limited the classifiers to category compar-539

isons within A or within B, such that the classifiers did not learn to discriminate A vs. B. Although we ex-540

pected that this approach would reduce the quality of feature selection by optimizing for fewer category541

distinctions, it eliminated the possibility that mixing predictive and predicted categories may artificially in-542

flate classification performance. This approach again produced qualitatively similar results, though slightly543

weaker. We found reliable evidence for both A and B Current items, during the ON (A: mean = 0.0093; 95%544

CI = [0.0060, 0.013], p <0.001; B: mean = 0.013; 95% CI = [0.0076, 0.018], p <0.001) and ISI periods (A: mean =545

0.010; 95% CI = [0.0063, 0.013], p <0.001; B: mean = 0.015; 95% CI = [0.0097, 0.020], p <0.001); evidence for X546

was reliable during the ISI (mean = 0.0078; 95% CI = [0.0045, 0.012], p <0.001), but not ON periods (mean =547
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0.0046; 95% CI = [-0.0012, 0.012], p = 0.17). Further, we numerically replicated our key finding of predictive548

B evidence during the Pre-ISI period (mean = 0.0038; 95% CI = [0.00, 0.0080], p = 0.050), though lingering A549

evidence during the Post-ON period was no longer reliable (mean = 0.0022; 95% CI = [-0.0034, 0.0081], p =550

0.47).551

Taken together, these results show that statistical learning of the category pairs in Structured blocks552

affected neural representations in the task. Not only did visual contacts represent the category of the first553

and second items in a pair while they were being perceived (A and B evidence during ON and ISI epochs of554

A and B, respectively), but also the first category during the second (A evidence during ON epoch of B) and555

the second category during the first (B evidence during ISI epoch after A). This latter effect indicates that556

the first item in a pair (from A category) had predictive value on average.557

Weagain examinedwhether these predictive effects emergedover time, in the first run of the Structured558

condition. For each participant, we computed the Spearman rank correlation of subblock number with559

the mean predictive evidence for B (averaged across all A items in each subblock), expecting a positive560

correlation. The resulting within-participant relationship was not reliable at the group level (mean rho =561

0.012; 95% CI = [-0.24, 0.24], p = 0.92). We also tested for a positive relationship across subblocks between562

prediction of B during A and neural entrainment for pairs, given that we expect both measures to depend563

upon statistical learning. However, this within-participant relationship was not reliable at the group level564

(mean rho = 0.038; 95% CI = [-0.12, 0.19], p = 0.67); nor was it reliable for neural entrainment to images565

(mean rho = -0.11; 95% CI = [-0.29, 0.079], p = 0.25).566

Although we did not observe a clear learning trajectory, we can still leverage variability in prediction567

across trials to understand the relationship between predictive value and memory.568

Subsequent memory analysis569

We theorized that items with predictive value are a lower priority for new encoding into episodic memory.570

Here we test this relationship by comparing neural category evidence for remembered vs. forgotten items571

within participants. That is, although A items had reliable predictive value on average, variability across572

items may relate to subsequent memory. To the extent that prediction interferes with encoding, we hy-573

pothesized that subsequently forgotten A items would elicit evidence for the upcoming B category during574

their encoding. Critically, in contrast to prior analyses relating entrainment to memory or prediction, which575

required measurements at the subblock-level, here we are able to probe the relationship between predic-576

tion and memory at the level of individual trials.577

Consistent with our hypothesis, B evidence during the ISI epoch after A (i.e., Predicted category) was578

negatively related to subsequent Amemory (Figure 8A): forgotten A items yielded reliable B evidence (mean579

= 0.0092; 95% CI = [0.0023, 0.017], p = 0.0030), whereas remembered A items did not (mean = 0.0017; 95%580

CI = [-0.0016, 0.0049], p = 0.31). In contrast, A evidence during the ISI epoch after A (i.e., Perceived category)581

was reliable for both remembered (mean = 0.012; 95% CI = [0.0091, 0.015], p <0.001) and forgotten (mean =582

0.014; 95% CI = [0.0077, 0.021], p <0.001) A items. This differential effect of subsequent memory on neural583

evidence for Perceived vs. Predicted categories during the ISI after Awas reflected in a significant 2 (evidence584

category: A, B) by 2 (subsequent memory: remembered, forgotten) interaction (p <0.001). This interaction585

was driven by a marginal difference in neural evidence for the Predicted B category during encoding of586

subsequently forgotten vs. remembered A items (mean difference = 0.0075; 95% CI = [-0.00046, 0.016], p587

= 0.065), but no reliable difference in neural evidence for the Perceived A category by subsequent memory588

(mean difference = 0.0022; 95% CI = [-0.0050, 0.0094], p = 0.57).589

As a control analysis, we performed the key steps above in the Random blocks. These blocks did not590

contain pairs, and so we dummy-coded pairs of X items (X
1
-X

2
instead of A-B). In contrast to Structured591

blocks, we did not expect that neural evidence of the “Predicted” X
2
category during the X

1
ISI would relate592

to subsequentmemory for X
1
. Indeed, there was no reliable evidence for the X

2
category for either remem-593

bered (mean = -0.0029; 95% CI = [-0.0069, 0.00084], p = 0.14) or forgotten (mean = 0.0011; 95% CI = [-0.0027,594

0.0054], p = 0.57) X
1
items. In contrast, neural evidence for the Perceived X

1
category during the X

1
ISI was595

reliable for both remembered X
1
items (mean = 0.010; 95% CI = [0.0039, 0.019], p <0.001) and forgotten X

1
596

items (mean = 0.0065; 95% CI = [0.0022, 0.012], p <0.001).597
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Figure 8. Subsequent memory analysis. A) Left: Timecourse of pattern similarity in visual contacts between A items

being encoded and the Perceived A (A during A) and Predicted B (B during A) category templates, as a function of

whether A items were subsequently remembered or forgotten. Right: Pattern similarity averaged within the ISI period,

the epoch in which we observed overall evidence of prediction, as a function of subsequent memory for A items (filled

bars = remembered; empty bars = forgotten). B) Left: Timecourse of pattern similarity in visual contacts between B

items being encoded and the Predicted B (B during A) and Perceived B (B during B) category templates, as a function of

whether B items were subsequently remembered for forgotten. Right: Pattern similarity averaged within the ISI period,

as a function of subsequent memory for B items. Error shading/bars reflect the bootstrapped 95% confidence interval

across participants. Each dot represents an individual participant. *p <0.05; **p <0.01; ***p <0.001
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We so far focused on the effects of prediction for memory of the item generating the prediction (A), but598

what is the mnemonic fate of the item being predicted (B), which in this task with deterministic pairs always599

appeared as expected? Whereas neural category evidence for B during the A ISI (Predicted) was negatively600

related to subsequent memory for A items, the opposite was true for memory of B items (Figure 8B): re-601

membered B items were associated with reliable prediction of B (mean = 0.0082; 95% CI = [0.0036, 0.012], p602

<0.001), but forgotten B items were not (mean = -0.0028; 95% CI = [-0.011, 0.0041], p = 0.49). In contrast, and603

similar to A memory, evidence for B during the B ISI (Perceived) was reliable for both remembered (mean =604

0.013; 95% CI = [0.0082, 0.018], p <0.001) and forgotten (mean = 0.014; 95% CI = [0.00096, 0.026], p = 0.034)605

B items. We did not find an interaction between category and memory (p = 0.22). However, there was a606

reliable difference in Predicted B evidence for remembered vs. forgotten B items (mean difference = 0.011;607

95% CI = [0.00060, 0.021], p = 0.039); Perceived B evidence did not differ as a function of memory (mean608

difference = 0.00064; 95% CI = [-0.014, 0.016], p = 0.89).609

We repeated the same control analysis of Random blocks, but now focused on subsequentmemory for610

X
2
items (equivalent to B, rather than X

1
memory for A). Neural evidence for the “Predicted” X

2
category611

during the ISI after X
1
was not reliable for either remembered (mean = 0.0013; 95% CI = [-0.0020, 0.0043], p612

= 0.44) or forgotten (mean = -0.00048; 95% CI = [-0.0030, 0.0017], p = 0.75) X
2
items.613

We again tested whether our key results generalized to templates created from two alternative classifica-614

tion approaches. Using a 6-way classifier, we replicated the finding that forgotten A items were associated615

with reliable predictive evidence of B (mean = 0.0075; 95% CI = [0.0015, 0.014], p = 0.009), whereas remem-616

bered A items were not (mean = 0.0026; 95% CI = [-0.00010, 0.0054], p = 0.061). In contrast, forgotten B617

items were not associated with reliable predictive evidence of B (mean = -0.0046; 95% CI = [-0.016, 0.0037],618

p = 0.40), whereas remembered B items were (mean = 0.0082; 95% CI = [0.0021, 0.015], p = 0.003). Using619

binary classifiers trained to discriminate within A or B categories, we again found that forgotten (mean =620

0.0075; 95% CI = [0.00087, 0.016], p = 0.014), but not remembered A items (mean = 0.0027; 95% CI = [-621

0.00086, 0.0061], p = 0.13) were associated with reliable predictive evidence of B, and that remembered622

(mean = 0.0084; 95% CI = [0.0033, 0.013], p = 0.0016), but not forgotten B items (mean = -0.0044; 95% CI =623

[-0.017, 0.0048], p = 0.47) were associated with reliable predictive evidence of B.624

Together, these results highlight the opposing influence of predictive value on memory for predictive625

versus predicted items. Namely, prediction of B (during A) is associated with worse memory for predictive626

A items (suggesting interference between the generation of a prediction and encoding of the current item)627

but better memory for predicted B items (suggesting that this prediction may potentiate encoding of an628

upcoming item).629

Discussion630

This study demonstrates a trade-off between how well an item is encoded into episodic memory and how631

strong of a future prediction it generates based on statistical learning. We first used frequency tagging632

to provide neural verification of statistical learning. During a sequence of scene photographs, electrodes633

in visual cortex represented pairs of scene categories that reliably followed each other, synchronizing not634

only to the individual scenes but also to the boundaries between pairs. Next, we used multivariate pattern635

analysis to assess how the paired categories were represented over time. Items from the first category in a636

pair elicited a representation of the second category, which grew in strength in advance of the onset of items637

from the second category. We refer to the ability of an item to generate this predictive representation as its638

“predictive value”. Critically, by relating these representational dynamics to subsequent memory behavior,639

we found that forgotten items from the first category triggered reliablepredictionsduring encodingwhereas640

remembered first items had not.641

Our work builds upon suggestive evidence from a prior study that predictive value may influence sub-642

sequent memory (Sherman and Turk-Browne, 2020). This prior study included behavioral and fMRI experi-643

ments, whereas the current study employed iEEG. Neural measures are an important advance over behav-644

ior alone because they can assay predictive representations during passive viewing at encoding. iEEG is645

superior to fMRI for this purpose because neural activity is sampled at much greater temporal resolution646

and activity reflects instantaneous electrical potentials rather than hemodynamic responses smoothed and647
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delayed in time. This providesmuch greater confidence that the upcoming category was being represented648

prior to its appearance and thus was truly predictive. Moreover, the prior study showed a negative rela-649

tionship between prediction and memory across participants, whereas the current study established this650

relationship within participant. This is also an important advance because an across-participant relation-651

ship does not provide strong evidence for the claim that prediction during encoding impairsmemory. Such652

a relationship could reflect generic individual differences such that, for example, a participant with better653

overall memory generates the same weak prediction on both remembered and forgotten trials. In contrast,654

in this study we were able to link prediction to successful vs. unsuccessful memory formation across items.655

This more sensitive approach yielded other findings not observed in the prior study, including that memory656

for B items had an opposite, positive relationship with prediction of B. Taken together, these results pro-657

videmechanistic insight into the interaction between predictive value andmemory, and speak to theoretical658

questions about the representations underlying statistical learning and episodic memory.659

Nature of representational changes660

Several fMRI studies have shown that statistical and related forms of learning can change neural representa-661

tions of associated items throughout the human brain (Schapiro et al., 2012, 2013; Schlichting et al., 2015;662

Deuker et al., 2016; Tompary and Davachi, 2017). For example, if exposed to sequential pairs embedded663

in a continuous stream of objects (akin to the category pairs in the current study), the two objects in a pair664

come to elicit more similar patterns of fMRI activity from before to after learning, when presented on their665

own, in the medial temporal lobe cortex and hippocampus (Schapiro et al., 2012). Such integration could666

be interpreted as evidence that the representations of the paired items merged into a single “unitized” rep-667

resentation of the pair that can be evoked by either item (Fujimichi et al., 2010). Alternatively, the paired668

items may remain distinct but become associated, such that either can be reactivated by the other through669

spreading activation (Schapiro et al., 2017). A key difference between these accounts is the timing of how670

learned representations emerge when one of the items is presented: the merging account predicts that671

the (same) unitized representation is evoked immediately by either paired item, whereas the associative672

account predicts that the presented item is represented immediately while the paired item is represented673

gradually over time through reactivation. These dynamics cannot be distinguished by fMRI because of its674

slow temporal resolution, but our iEEG approach may shed light.675

On the surface, the results of our frequency tagging analysis may seem to suggest a merged represen-676

tation of the category pairs. The reliable peak in coherence at the frequency of two consecutive stimuli may677

suggest that electrodes in visual cortex represented the paired categoriesas a singleunit (Batterink and Paller,678

2017). However, the results of our pattern similarity analysis are more consistent with an association be-679

tween the paired categories. Although we found that both categories in a pair could be represented at680

the same time (i.e., predictive B evidence during the A Pre trial and lingering A evidence during the B Post681

trial, relative to no such evidence on X trials), these representations were offset in time. The representation682

of the A category was robust during both the ON and ISI epochs of the A trial, whereas the representa-683

tion of the B category was not reliable during the ON epoch and only emerged during the ISI epoch. Thus,684

our results are more consistent with an associative account in visual cortex. It remains possible that the685

hippocampus or other brain structures represent statistical regularities through unitized representations.686

Moreover, one limitation of our study is that we did notmeasure representationsof individual categories be-687

fore and after learning to directly assess representational change. Although we could not directly measure688

representational change from before to after learning, we did correlate the category templates measured689

after learning. Unitization of paired categories would be reflected in increased pattern similarity among690

paired, relative to unpaired and random categories. We did not find reliable evidence of such representa-691

tional merging, inconsistent with a unitization account. However, prior studies focused on the unitization of692

paired items rather than categories. Thus, if we had found evidence of representational merging of paired693

categories in the current study, it would be unclear whether this reflects unitization in the same way or a694

qualitatively different kind of representational change.695
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Predictive interference on memory encoding696

The timecourse of predictive representations also sheds light on the temporal dynamics of the interaction697

between episodic memory and statistical learning. When examining the overall effect of prediction, we698

found reliable B evidence during the ISI epoch of A, immediately preceding the appearance of B. However,699

this resultwas obtained by averaging across all trials, both rememberedand forgotten. Thus, it was possible700

that when separated out by subsequentmemory, a different patternwould emerge. One possibility is that B701

evidence would come online earlier for forgotten items, whichmight suggest that the observed impairment702

in A memory resulted from interference with perceptual processing of A. To the contrary, the difference703

in B evidence for remembered vs. forgotten A items was clearest during the ISI after A was removed from704

the screen, which suggests that prediction may interfere with later, post-perceptual stages of processing to705

impair encoding.706

Interestingly, evidence for the current A category was comparable across remembered and forgotten707

A items. Thus, in this paradigm, variance in memory was explained solely by prediction of the upcoming708

category, not the strength of perceptual processing of the category being encoded (Kuhl et al., 2012) nor709

modulation of this processing by prediction (both of which would have affected A evidence). The lack of a710

relationship between A evidence and A memory may reflect a tradeoff: category evidence may reflect rep-711

resentation of the most diagnostic features of a category, which would enhancememory for these features712

while impairing memory for idiosyncratic features of particular exemplars. A related account may explain713

why predictive B evidence was positively linked to B memory (Smith et al., 2013; Thavabalasingam et al.,714

2016): B evidence during the A ISI may potentiate the diagnostic features of the B category, enhancing the715

salience of idiosyncratic features of B when it appears to strengthen episodic memory for B. Future studies716

could test these possibilities by using a more continuous measure of memory precision and by testing on717

modified items that retain category-diagnostic vs. idiosyncratic features.718

Our finding that prediction relates to better memory for predictable B items contrasts with findings719

of enhanced encoding for unpredictable/unexpected items (Kim et al., 2014; Greve et al., 2017; Bein et al.,720

2021). These seemingly divergent findings are difficult to reconcile because predictions in our study were721

never violated: in the Structured condition, the A in each pair was followed deterministically by B; in the722

Random condition, although each X was unexpected to some degree they did not violate a learned expecta-723

tion. Thus, it is possible that replacing the expected B with another category would have led to even better724

memory encoding. That said, one interpretation of our finding of enhanced (predictable) B memory that725

would be consistent with a benefit of prediction error for episodic memory could be that features idiosyn-726

cratic to a particular B exemplar (needed to later retrieve this specific episodicmemory)may have violated a727

category-level expectation grounded in the diagnostic (i.e., non-idiosyncratic) features of a category shared728

across its exemplars. This question — as well as questions above about how the category-level nature of729

the prediction may have affected memory for A — could be informed by future studies examining effects730

of item-level prediction on memory.731

This work builds on existing theories considering the complex interplay between memory encoding and732

memory retrieval. To the extent that prediction from statistical learning can be considered associative733

retrieval (Kok and Turk-Browne, 2018; Hindy et al., 2016), our findings converge with the notion that the734

brain cycles betweenmutually exclusive encoding and retrieval states (Hasselmo et al., 2002; Duncan et al.,735

2012; Long and Kuhl, 2019; Bein et al., 2020), organized by the hippocampal theta cycle (Kerrén et al., 2018;736

Pacheco Estefan et al., 2021). Further, a recent computational model suggests that predictive uncertainty737

determines when memories should be encoded or retrieved (Lu et al., 2022). The model accounts for find-738

ings that familiar experiences aremore likely to evoke retrieval (Patil and Duncan, 2018), and thusmay help739

to explain why predictions from statistical learning are prioritized over episodic encoding.740

Neural source of predictions741

The current study sought to decode evidence of visual categories and so focused on electrode contacts in742

visual cortex. This adds to a growing literature on predictive signals in visual cortex (De Lange et al., 2018;743

Kim et al., 2020; Clarke et al., 2022). Importantly, in our previous fMRI study (Sherman and Turk-Browne,744

2020), we found evidence of prediction only in the hippocampus. We interpreted the lack of an effect in745
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visual cortex in light of the fact that we were measuring prediction (of B) while other items (A) were be-746

ing perceived; thus, if visual cortex preferentially represents on-screen, perceived information, we may not747

have been sensitive to a weaker, simultaneous prediction effect. Indeed, other fMRI studies have found pre-748

dictions in visual cortex during the absence or omission of perceptual input (Hindy et al., 2016; Clarke et al.,749

2022). Using a time-resolved measure like iEEG in the current study provided another solution to this prob-750

lem, by allowing us to isolate short ON vs. ISI time periodswhen there was vs. was not a competing stimulus751

present, respectively (which fMRI would have been unable to separate). In fact, we found evidence for pre-752

diction during the ISI after the predictive item but not while the predictive item was on the screen. This753

increased sensitivity to prediction specifically during the ISI period may have also provided a clean enough754

prediction signal to detect a trial-level relationship with memory.755

Although we observe these predictive signals in visual cortex, these signals may originate elsewhere in756

the brain. A strong candidate is the hippocampus and surroundingmedial temporal lobe cortex. In addition757

to representingpredictions (Kok and Turk-Browne, 2018; Sherman and Turk-Browne, 2020;Reddy et al., 2021),758

the hippocampus interfaces between perception and memory (Treder et al., 2021) and has been shown759

to drive reinstatement of predicted information in visual cortex (Bosch et al., 2014; Tanaka et al., 2014;760

Hindy et al., 2016; Danker et al., 2017).761

Beyond generating predictions, the hippocampus may also be the nexus of the interaction between762

episodicmemory and statistical learning, given its fundamental role in both functions (Schapiro et al., 2017).763

Indeed, given the necessity of the hippocampus for episodicmemory, our study raises questions about how764

the representations of perceived and predicted categories in visual cortex are routed into the hippocampus765

for encoding. One intriguing possibility is that these representations areprioritized according to biased com-766

petition (Desimone, 1998;Hutchinson et al., 2016), leading to preferential routing and subsequent encoding767

of predicted, but not perceived, information in the hippocampus. Relatedly, recent work had found that en-768

coding vs. retrieval states are associated with distinct patterns of activity in visual cortex (Long and Kuhl,769

2021), suggesting that representations in visual regions may be fundamentally shaped by memory state in770

the hippocampus.771

The patients in the current study had relatively few contacts in the hippocampus and medial temporal772

lobe cortex, precluding careful analysis of prediction in these regions and how it relates to visual cortex.773

Future studies with a larger cohort of patients and/or high-density hippocampal recordings would be useful774

for this purpose. Such studies could also provide a more direct link between statistical learning-based775

prediction and encoding/retrieval modes by examining how hippocampal theta phase (Kerrén et al., 2018;776

Pacheco Estefan et al., 2021) relates to predictive signals in visual cortex. Likewise, future studies could777

disrupt the hippocampus through stimulation to establish its causal role in predictive representations in778

visual cortex.779

Limitations of the current study780

In the current study, we exploited the high signal-to-noise of intracranial recordings in a small sample of781

patients. Motivated by the ability to densely sample neural data within this rare population, we focused our782

experimental design on optimizing neural measures. This led to a few limitations.783

Our primary evidence of statistical learning came from neural rather than behavioral measures, namely784

neural entrainment at the pair frequency and category prediction in pattern similarity. We did not have785

any direct behavioral measures of statistical learning, such as faster response times for predictable items786

during learning (Gómez et al., 2011; Siegelman et al., 2018) or familiarity judgments about regularities after787

learning (Fiser and Aslin, 2002; Turk-Browne et al., 2005; Brady and Oliva, 2008). We could not assess sta-788

tistical learning behaviorally during the encoding phase because we used passive viewing (to reduce task789

complexity for patients) and because the images were presented too rapidly for manual responses (to en-790

able neural measures of entrainment). We did not include a separate behavioral test of statistical learning791

after the encoding phase because of limited testing time with the patients that required us to prioritize792

the neural measures and the behavioral memory test most central to the hypothesis. Future work should793

consider relating neural signatures of statistical learning from iEEG to more direct behavioral measures of794

statistical learning, as has been done with scalp EEG (Batterink and Paller, 2017) and fMRI (Karuza et al.,795
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2013).796

Statistical learning was also measured indirectly via performance on the recognition memory test. We797

found reduced memory for predictive A items in the episodic memory test, a replication of prior work798

(Sherman and Turk-Browne, 2020). This effect provides some evidence of learning because the pairs were799

novel and arbitrary and thus A was only predictive (of B) as a result of new learning. Given that the only800

difference between A and X was the added predictiveness of A, reduced memory for A relative to X there-801

fore must reflect this learning. That said, there are some limitations to this behavioral effect. Specifically, it802

was present only in hit rate for A (saying “old” to old exemplars), and not in A
′
, a measure of sensitivity that803

corrects for false alarm rate for A (saying “old” to new exemplars). The lack of an A
′
effect resulted from a804

trend toward lower false alarm rates for A than X. Such a result could suggest a criterion shift for A items805

(less likely to say “old” in general). However, the prior study (Sherman and Turk-Browne, 2020), which had806

more statistical power, did not find a similar trend in false alarm rates; rather, there was a similar trend807

across hit rate and A
′
. Furthermore, the fact that Structured and Random conditions were presented in808

separate blocks in the current study (to enable frequency tagging) as opposed to intermixed in the prior809

study complicates the interpretation of weaker differences between A and X, as they could be confounded810

with time-dependent differences in the patients’ motivation, attention, and/or symptoms. Nevertheless, we811

were able to leverage variance in memory within A items of the Structured condition, by relating memory812

to trial-by-trial neural prediction.813

Lastly, we adopted a “subblock” structure, in which individual exemplars repeated four times before814

switching to new exemplars (but holding the category pairs constant). This choice was made to balance815

the rapid presentation of stimuli needed for the neural frequency tagging analyses with providing sufficient816

exposure to the images so that some would be later remembered. Although we found some evidence that817

neural entrainment to the pairs increased across Structured subblocks, there was little evidence of a learn-818

ing trajectory in the behavioral or predictive neural measures. It is possible that exemplar repetition in the819

subblocks may have allowed learning to asymptote after only one or a few subblocks (Turk-Browne et al.,820

2009), eliminating the possibility of finding a more gradual change in these measures across subblocks.821

These analyses are further limited by the small number of patients relative to prior work with healthy in-822

dividuals that found clearer learning effects in behavior (Sherman and Turk-Browne, 2020). Future studies823

could tailor their experimental designs to optimize detection of a learning trajectory, for example by forego-824

ing neural entrainment and presenting images once for a longer duration or by introducing more complex825

regularities.826

Conclusion827

In examining the trade-off between prediction and memory encoding, our work suggests a novel theoreti-828

cal perspective on why predictive value shapes memory. We argue that because memory is capacity- and829

resource-limited,memory systemsmust prioritizewhich information to encode. When prior statistical learn-830

ing enables useful prediction of an upcoming experience, that prediction takes precedence over encoding.831

In this way, encoding is focused adaptively on experiences for which there is room to develop stronger832

predictions.833

Acknowledgments834

We are grateful to the patients who participated in this study. We thank Kun Wu for providing the elec-835

trode reconstructions, Christopher Benjamin for helping to recruit patients and coordinate testing, Richard836

Aslin and Sami Yousif for helpful conversations, and Gregory McCarthy for advice about data collection and837

analysis, as well as for feedback on the manuscript. This work was supported by NIH grant R01 MH069456838

(N.B.T-B.), the Canadian Institute for Advanced Research (N.B.T-B.), and an NSF GRFP grant (B.E.S).839

Competing Interests840

The authors declare no competing interests.841

25



References842

Aitken F, Kok P. Hippocampal representations switch from errors to predictions during acquisition of predictive associ-843

ations. Nature Communications. 2022; 13(1):1–13.844

Aitken F, Turner G, Kok P. Prior expectations of motion direction modulate early sensory processing. Journal of Neuro-845

science. 2020; 40(33):6389–6397.846

Aly M, Turk-Browne NB. How hippocampal memory shapes, and is shaped by, attention. In: The hippocampus from cells847

to systems Springer; 2017.p. 369–403.848

Batterink LJ, Paller KA. Online neural monitoring of statistical learning. Cortex. 2017; 90:31–45.849

Bein O, Duncan K, Davachi L. Mnemonic prediction errors bias hippocampal states. Nature communications. 2020;850

11(1):1–11.851

Bein O, Plotkin NA, Davachi L. Mnemonic prediction errors promote detailed memories. Learning and Memory. 2021; .852

Biderman N, Bakkour A, Shohamy D. What are memories for? The hippocampus bridges past experience with future853

decisions. Trends in Cognitive Sciences. 2020; 24(7):542–556.854

Bosch SE, Jehee JF, Fernández G, Doeller CF. Reinstatement of associative memories in early visual cortex is signaled by855

the hippocampus. Journal of Neuroscience. 2014; 34(22):7493–7500.856

Brady TF, Oliva A. Statistical learning using real-world scenes: Extracting categorical regularities without conscious intent.857

Psychological science. 2008; 19(7):678–685.858

Choi D, Batterink LJ, Black AK, Paller KA, Werker JF. Preverbal Infants Discover Statistical Word Patterns at Similar Rates859

as Adults: Evidence From Neural Entrainment. Psychological Science. 2020; 31(9):1161–1173.860

Clarke A, Crivelli-Decker J, Ranganath C. Contextual expectations shape cortical reinstatement of sensory representa-861

tions. Journal of Neuroscience. 2022; 42(30):5956–5965.862

Cowan ET, Schapiro AC, Dunsmoor JE, Murty VP. Memory consolidation as an adaptive process. Psychonomic Bulletin &863

Review. 2021; 28(6):1796–1810.864

Danker JF, Tompary A, Davachi L. Trial-by-trial hippocampal encoding activation predicts the fidelity of cortical reinstate-865

ment during subsequent retrieval. Cerebral Cortex. 2017; 27(7):3515–3524.866

De Brigard F. Is memory for remembering? Recollection as a form of episodic hypothetical thinking. Synthese. 2014;867

191(2):155–185.868

De Lange FP, Heilbron M, Kok P. How do expectations shape perception? Trends in cognitive sciences. 2018; 22(9):764–869

779.870

Demarchi G, Sanchez G, Weisz N. Automatic and feature-specific prediction-related neural activity in the human auditory871

system. Nature communications. 2019; 10(1):1–11.872

Desimone R. Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions873

of the Royal Society of London Series B: Biological Sciences. 1998; 353(1373):1245–1255.874

Deuker L, Bellmund JL, Schröder TN, Doeller CF. An event map of memory space in the hippocampus. Elife. 2016;875

5:e16534.876

Dickerson KC, Adcock RA. Motivation and memory. Stevens’ Handbook of Experimental Psychology and Cognitive Neu-877

roscience, Learning and Memory. 2018; 1:215.878

Dolcos F, Katsumi Y, Weymar M, Moore M, Tsukiura T, Dolcos S. Emerging directions in emotional episodic memory.879

Frontiers in Psychology. 2017; 8:1867.880

Duncan K, Sadanand A, Davachi L. Memory’s penumbra: episodic memory decisions induce lingering mnemonic biases.881

Science. 2012; 337(6093):485–487.882

Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical883

accuracy. Statistical science. 1986; p. 54–75.884

Endress AD, Johnson SP. When forgetting fosters learning: A neural network model for statistical learning. Cognition.885

2021; p. 104621.886

26



Fiser J, Aslin RN. Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experi-887

mental Psychology: Learning, Memory, and Cognition. 2002; 28(3):458.888

Fujimichi R, Naya Y, Koyano KW, Takeda M, Takeuchi D, Miyashita Y. Unitized representation of paired objects in area889

35 of the macaque perirhinal cortex. European Journal of Neuroscience. 2010; 32(4):659–667.890

Gebhart AL, Aslin RN, Newport EL. Changing structures in midstream: Learning along the statistical garden path. Cogni-891

tive science. 2009; 33(6):1087–1116.892

Goldfarb EV. Enhancingmemorywith stress: progress, challenges, and opportunities. Brain and Cognition. 2019; 133:94–893

105.894

Gómez DM, Bion RA, Mehler J. The word segmentation process as revealed by click detection. Language and Cognitive895

Processes. 2011; 26(2):212–223.896

Greve A, Cooper E, Kaula A, Anderson MC, Henson R. Does prediction error drive one-shot declarative learning? Journal897

of memory and language. 2017; 94:149–165.898

Grier JB. Nonparametric indexes for sensitivity and bias: computing formulas. Psychological bulletin. 1971; 75(6):424.899

Hasselmo ME, Bodelón C, Wyble BP. A proposed function for hippocampal theta rhythm: separate phases of encoding900

and retrieval enhance reversal of prior learning. Neural computation. 2002; 14(4):793–817.901

Henin S, Turk-Browne NB, Friedman D, Liu A, Dugan P, Flinker A, Doyle W, Devinsky O, Melloni L. Learning hierarchical902

sequence representations across human cortex and hippocampus. Science advances. 2021; 7(8):eabc4530.903

Hindy NC, Ng FY, Turk-Browne NB. Linking pattern completion in the hippocampus to predictive coding in visual cortex.904

Nature neuroscience. 2016; 19(5):665–667.905

Hutchinson JB, Pak SS, Turk-Browne NB. Biased competition during long-term memory formation. Journal of cognitive906

neuroscience. 2016; 28(1):187–197.907

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and908

motion correction of brain images. Neuroimage. 2002; 17(2):825–841.909

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012; 62(2):782–790.910

Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medical image911

analysis. 2001; 5(2):143–156.912

Jungé JA, Scholl BJ, Chun MM. How is spatial context learning integrated over signal versus noise? A primacy effect in913

contextual cueing. Visual cognition. 2007; 15(1):1–11.914

Karuza EA, Newport EL, Aslin RN, Starling SJ, Tivarus ME, Bavelier D. The neural correlates of statistical learning in a word915

segmentation task: An fMRI study. Brain and language. 2013; 127(1):46–54.916

Kerrén C, Linde-Domingo J, Hanslmayr S, WimberM. An optimal oscillatory phase for pattern reactivation duringmemory917

retrieval. Current Biology. 2018; 28(21):3383–3392.918

Kim G, Lewis-Peacock JA, Norman KA, Turk-Browne NB. Pruning of memories by context-based prediction error. Pro-919

ceedings of the National Academy of Sciences. 2014; 111(24):8997–9002.920

Kim H, Schlichting ML, Preston AR, Lewis-Peacock JA. Predictability changes what we remember in familiar temporal921

contexts. Journal of cognitive neuroscience. 2020; 32(1):124–140.922

Kok P, Failing MF, de Lange FP. Prior expectations evoke stimulus templates in the primary visual cortex. Journal of923

cognitive neuroscience. 2014; 26(7):1546–1554.924

Kok P, Mostert P, De Lange FP. Prior expectations induce prestimulus sensory templates. Proceedings of the National925

Academy of Sciences. 2017; 114(39):10473–10478.926

Kok P, Turk-Browne NB. Associative prediction of visual shape in the hippocampus. Journal of Neuroscience. 2018;927

38(31):6888–6899.928

Kuhl BA, Rissman J, Wagner AD. Multi-voxel patterns of visual category representation during episodic encoding are929

predictive of subsequent memory. Neuropsychologia. 2012; 50(4):458–469.930

27



Long NM, Kuhl BA. Decoding the tradeoff between encoding and retrieval to predict memory for overlapping events.931

NeuroImage. 2019; 201:116001.932

Long NM, Kuhl BA. Cortical representations of visual stimuli shift locations with changes in memory states. Current933

Biology. 2021; 31(5):1119–1126.934

Lu Q, Hasson U, Norman KA. A neural network model of when to retrieve and encode episodic memories. eLife. 2022;935

11:e74445.936

Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and937

invasive electrophysiological data. Computational intelligence and neuroscience. 2011; 2011.938

Pacheco Estefan D, Zucca R, Arsiwalla X, Principe A, Zhang H, Rocamora R, Axmacher N, Verschure PF. Volitional learning939

promotes theta phase coding in the human hippocampus. Proceedings of the National Academy of Sciences. 2021;940

118(10):e2021238118.941

Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, Staib LH. BioImage Suite: An integrated942

medical image analysis suite: An update. The insight journal. 2006; 2006:209.943

Patil A, Duncan K. Lingering cognitive states shape fundamental mnemonic abilities. Psychological Science. 2018;944

29(1):45–55.945

Reddy L, Self MW, Zoefel B, PoncetM, Possel JK, Peters JC, Baayen JC, Idema S, VanRullen R, RoelfsemaPR. Theta-phase de-946

pendent neuronal coding during sequence learning in human single neurons. Nature communications. 2021; 12(1):1–9.947

Schacter DL, Addis DR, Hassabis D, Martin VC, Spreng RN, Szpunar KK. The future of memory: remembering, imagining,948

and the brain. Neuron. 2012; 76(4):677–694.949

Schapiro AC, Kustner LV, Turk-Browne NB. Shaping of object representations in the humanmedial temporal lobe based950

on temporal regularities. Current biology. 2012; 22(17):1622–1627.951

Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM. Neural representations of events arise from tem-952

poral community structure. Nature neuroscience. 2013; 16(4):486–492.953

Schapiro AC, Turk-Browne NB, Botvinick MM, Norman KA. Complementary learning systems within the hippocampus:954

a neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transac-955

tions of the Royal Society B: Biological Sciences. 2017; 372(1711):20160049.956

Schlichting ML, Mumford JA, Preston AR. Learning-related representational changes reveal dissociable integration and957

separation signatures in the hippocampus and prefrontal cortex. Nature communications. 2015; 6(1):1–10.958

Sherman BE, Graves KN, Turk-Browne NB. The prevalence and importance of statistical learning in human cognition and959

behavior. Current opinion in behavioral sciences. 2020; 32:15–20.960

Sherman BE, Turk-Browne NB. Statistical prediction of the future impairs episodic encoding of the present. Proceedings961

of the National Academy of Sciences. 2020; 117(37):22760–22770.962

SiegelmanN, Bogaerts L, KronenfeldO, Frost R. Redefining “learning” in statistical learning: What does an onlinemeasure963

reveal about the assimilation of visual regularities? Cognitive science. 2018; 42:692–727.964

Smith TA, Hasinski AE, Sederberg PB. The context repetition effect: Predicted events are remembered better, even when965

they don’t happen. Journal of Experimental Psychology: General. 2013; 142(4):1298.966

Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ. Cortical representations are reinstated by the967

hippocampus during memory retrieval. Neuron. 2014; 84(2):347–354.968

Thavabalasingam S, O’Neil EB, Zeng Z, Lee AC. Recognition memory is improved by a structured temporal framework969

during encoding. Frontiers in Psychology. 2016; 6:2062.970

Tompary A, Davachi L. Consolidation promotes the emergence of representational overlap in the hippocampus and971

medial prefrontal cortex. Neuron. 2017; 96(1):228–241.972

Treder MS, Charest I, Michelmann S, Martín-Buro MC, Roux F, Carceller-Benito F, Ugalde-Canitrot A, Rollings DT, Sawlani973

V, Chelvarajah R, et al. The hippocampus as the switchboard between perception and memory. Proceedings of the974

National Academy of Sciences. 2021; 118(50).975

Turk-Browne NB, Jungé JA, Scholl BJ. The automaticity of visual statistical learning. Journal of Experimental Psychology:976

General. 2005; 134(4):552.977

28



Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK. Neural evidence of statistical learning: Efficient detection of visual978

regularities without awareness. Journal of cognitive neuroscience. 2009; 21(10):1934–1945.979

Walther DB, Caddigan E, Fei-Fei L, Beck DM. Natural scene categories revealed in distributed patterns of activity in the980

human brain. Journal of neuroscience. 2009; 29(34):10573–10581.981

29


