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Abstract The function of long-term memory is not just to reminisce about the past, but also to make
predictions that help us behave appropriately and efficiently in the future. This predictive function of
memory provides a new perspective on the classic question from memory research of why we remember
some things but not others. If prediction is a key outcome of memory, then the extent to which an item
generates a prediction signifies that this information already exists in memory and need not be encoded.
We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in
visual cortex during a statistical learning task and link the strength of these predictions to subsequent
episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of
which contained regularities that allowed the category of the next scene to be predicted. We verified that
statistical learning occurred using neural frequency tagging and measured category prediction with
multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by
predictive items that were subsequently forgotten. Such interference provides a mechanism by which
prediction can regulate memory formation to prioritize encoding of information that could help learn new
predictive relationships.

Significance Statement. When faced with a new experience, we are rarely at a loss for what to do.
Rather, because many aspects of the world are stable over time, we rely upon past experiences to
generate expectations that guide behavior. Here we show that these expectations during a new
experience come at the expense of memory for that experience. From intracranial recordings of visual
cortex, we decoded what humans expected to see next in a series of photographs based on patterns of
neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in
a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak
expectations could help improve these expectations in future encounters.

Introduction

Long-term memory has a limited capacity, and thus a major goal of psychology and neuroscience has
been to identify factors that determine which memories to store. Well-known factors include attention
(Aly and Turk-Browne, 2017), emotion (Dolcos et al., 2017), motivation (Dickerson and Adcock, 2018), stress
(Goldfarb, 2019), and sleep (Cowan et al., 2021). Here we further test a novel factor that constrains long-
term memory formation: predictive value.
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Beyond reliving the past, a key function of memory is thatit allows us to predict the future (Schacter et al.,
2012). When faced with a new experience, we draw on related experiences from the past to know what is
likely to happen when and where (De Brigard, 2014; Biderman et al., 2020). This knowledge is the result
of statistical learning, which identifies patterns or regularities in the environment that repeat over time
(Sherman et al., 2020; Endress and Johnson, 2021) and form the basis of predictions (De Lange et al., 2018).
We hypothesize that the availability of these predictions during encoding affects whether a new memory is
formed. Namely, if one of the main objectives of long-term memory is to enable prediction, in the service of
adaptive behavior, experiences that already generate a prediction may not need to be encoded. In contrast,
experiences that yield uncertainty about what will happen next may be more important to store because
they can help learn over time what should have been expected. Note that this is distinct from whether
an experience being encoded was itself expected or unexpected, which also affects subsequent memory
(Greve et al., 2017; Bein et al., 2021); rather, we argue that the process of generating a prediction based on
the experience impedes its encoding.

We term this ability of an experience to generate a prediction its predictive value. We previously pre-
sented some suggestive evidence for predictive value as an encoding factor. In a statistical learning study
with images presented in temporal pairs, subsequent memory for the first item in a pair was impaired rela-
tive to unpaired control items (Sherman and Turk-Browne, 2020). Because the firstitem in a pair was always
followed by the second item, it could have enabled a prediction of the second item and thus had predictive
value.

However, this prior study was not able to directly link the predictive value of an item during encoding to
subsequentmemory. From the behavioral data alone (in which prediction was not directly measured), it was
unclear whether the memory impairment for the first item originated at the time of encoding or emerged
in later stages such as consolidation or retrieval. For example, the first item might have been encoded well,
but when this item was probed in the later memory test, its association with the second item interfered
with recognition. Although an fMRI experiment provided some evidence of prediction during encoding —
the category of the second item could be decoded during the first — the poor temporal resolution fMRI
muddied this interpretation. The decoded neural signals were recorded during or after the second item
and shifted backward in time based on assumptions about the hemodynamic lag. Methods with better
temporal resolution could provide more precise linking between neural signals and experimental events,
allowing for more direct measurement of predictions.

Additionally, in our prior work, we only found a relationship between prediction and encoding across
participants. Average fMRI evidence for the category of second items during first items was negatively
associated with overall memory performance for firstitems. However, this could reflect a genericindividual
difference — that participants who make more predictions tend to have worse memory — rather than
prediction having a mechanistic effect on encoding. According to the latter account, whether a participant
remembers or forgets a given item should depend on whether that item triggered a prediction during its
encoding. This requires testing for a relationship between prediction and encoding across items within
participant. Time-resolved methods with denser sampling of individual trials could better enable trial-level
estimates of prediction necessary for within-participant subsequent memory analyses.

The present study addresses these issues to better establish predictive value as an encoding factor. We
combine intracranial EEG (iEEG) with multivariate pattern analysis, allowing us to measure neural predic-
tions in a time-resolved manner and link them to subsequent behavioral memory across trials. Epilepsy
patients viewed a rapid stream of scene photographs across blocks of a statistical learning task. The scenes
consisted of unique exemplars from various categories (e.g., beaches, mountains, waterfalls) that differed
by block. In the Random blocks, the order of “control” (condition X) categories from which the exemplars
were drawn was random. In the Structured blocks, the categories were paired such that exemplars from
“predictive” (condition A) categories were always followed by exemplars from “predictable” (condition B)
categories (Figure 1A). Patients were not informed of these conditions or the existence of category pairs,
which they learned incidentally through exposure (Brady and Oliva, 2008). The items from each category
were presented in sub-blocks that changed after four presentations (Figure 1B). After both blocks, patients
completed a recognition memory test for the exemplars from the stream.
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To track statistical learning in the brain, we employed neural frequency tagging (Batterink and Paller,
2017; Choi et al., 2020; Henin et al., 2021). We quantified the phase coherence of oscillations at the fre-
quency of individual items (present in both Random and Structured blocks) and at half of that frequency
reflecting groupings of two items (present only in Structured blocks with category pairs). To measure predic-
tion during encoding, we used multivariate pattern similarity (Kok et al., 2014, 2017; Demarchi et al., 2019;
Aitken et al., 2020). We first created a template pattern for each scene category based on the neural ac-
tivity it evoked in visual contacts. We then quantified the expression of these categories during statistical
learning, defining prediction as evidence for the second category in a pair evoked by items from the first
category.

Although the hippocampus may be the nexus of competition between statistical prediction and episodic
encoding (Schapiro et al., 2017; Sherman and Turk-Browne, 2020), hippocampal signals may be relayed and
reinstated throughout the cortical hierarchy (Bosch et al., 2014; Tanaka et al., 2014; Danker et al., 2017;
Hindy et al., 2016; Aitken and Kok, 2022; Clarke et al., 2022) and frequency tagging (Henin et al., 2021) in vi-
sual cortex. This allowed us to test our hypotheses robustly in epilepsy patients whose clinical care resulted
in extensive electrode coverage in visual cortex but not the hippocampus.

In sum, by assessing iEEG signals during the rapid presentation of scenes, we measured the neural
representations underlying statistical learning and prediction, and linked these online learning measures
to offline memory, revealing how predictive value constrains memory encoding.

Materials and Methods

Participants
We tested 10 participants (7 female; age range: 19-69) who had been surgically implanted with intracranial
electrodes for seizure monitoring. Decisions on electrode placement were determined solely by the clinical
care team to optimize localization of seizure foci. Participants were recruited through the Yale Comprehen-
sive Epilepsy Center. Participants provided informed consent in a manner approved by the Yale University
Human Subjects Committee.

A summary of patient demographics, clinical details, and research participation can be found in Table 1.
Given electrode coverage and usable data, we retained 9 patients in the behavioral analyses, 8 patients in
the neural frequency tagging analyses, and 7 patients in the neural category evidence analyses.

iEEG recordings

EEG data were recorded on a NATUS NeuroWorks EEG recording system. Data were collected at a sampling
rate of 4096 Hz. Signals were referenced to an electrode chosen by the clinical team to minimize noise in
the recording. To synchronize EEG signals with the experimental task, a custom-configured DAQ was used
to convert signals from the research computer to 8-bit “triggers” that were inserted into a separate digital
channel.

iEEG preprocessing

iEEG preprocessing was carried out in FieldTrip (Oostenveld et al., 2011). A notch filter was applied to re-
move 60-Hz line noise. No re-referencing was applied, except for one patient, whose reference was in visual
cortex, resulting in a visual-evoked response in all electrodes; for this patient, we re-referenced the datato a
white matter contactin the left anterior cingulate cortex. Data were downsampled to 256 Hz and segmented
into trials using the triggers.

Electrode selection

Patients’ electrode contact locations were identified using their post-operative CT and MRI scans. Recon-
structions were completed in Biolmage Suite (Papademetris et al., 2006) and were subsequently registered
to the patient's pre-operative MRI scan, resulting in contact locations projected into the patient's pre-operative
space. The resulting files were converted from the Bioimagesuite format (MGRID) into native space coordi-
nates using FieldTrip functions. The coordinates were then used to create a region of interest (ROI) in FSL
(Jenkinson et al., 2012), with the coordinates of each contact occupying one voxel in the mask (Figure 2).



s
O
p-
@)
(0p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
(0p)
O
| -
-
)
Z
P

A A X

Predictive Predictable Random control

Pair 1
—

Pair 2
—5

subblock N

\

Figure 1. Task design. (A) Example scene category pairings for one participant. Three of 12 categories were assigned to
condition A. Each A category was reliably followed by one of three other categories assigned to condition B to create
pairs. The remaining six categories assigned to condition X were not paired. Participants viewed the Aand B
(Structured) and X (Random) categories in separate blocks of the task. (B) Example stimuli from the Structured block.
Participants passively viewed a continuous stream of scenes. Each scene was shown for 267 ms, followed by an ISI of
267 ms with only a fixation cross on the screen. The stream was segmented into subblocks. The same exemplar of each
category was presented four times per subblock, and new exemplars were introduced for the next subblock. For the
Structured block, the category pairs remained consistent across subblocks. Category pairs are denoted by a colored
frame, corresponding to the A-B pairs (and colored arrows) in subpanel A.



Table 1. Patient Information.

ID Age Sex nElec(vis) Implant Data Collected Notes

1 19 F 203(21) RG/S/D 2S,2R R2 mem data not usable (D)

2 26 F 163(59) LG/S/D 2S,2R -

3 43 F 172(10) Bi D 1S, 2R -

4 61 F 136(0) Bi D 1S, 1R neural mem data not usable (T)
5 31 M 152(31) LG/S/D 2S,2R R1 encoding data not usable (T)
6 69 F 92(7) LD 2S, 2R -

7 33 M 232(22) Bi D 1S, 1R -

8 31 F 192(20) Bi D 2S, 2R no mem data collected (C)

9 56 F 192(36) Bi D 2S, 2R R1 encoding data not usable (T)
10 53 M 148(0) Bi D 2S, 2R -

Description of patient participation. ID: patient participation number. Age: in years. Sex: M = Male, F
= Female. nElec (vis): the total number of electrode contacts, followed by the number of visual electrode
contacts. Implant: R = right-sided implant; L = left-sided implant; Bi = bilateral implant; G = grid; S = strip; D =
depth. Data collected: the number of runs for each condition collected (S = Structured, R = Random). Notes:
which runs (if any) were excluded from given analyses and why. D = patient distraction (e.g., a clinician
coming in and disrupting testing); T = trigger issue (i.e., an error with the equipment such that we could not
align individual trials to our neural signal); C = computer error (e.g., the computer crashed).

137 For purposes of decoding scene categories, we were specifically interested in examining visually respon-
138 Sive contacts (Walther et al., 2009). We defined visual cortex on the MNI T1 2mm standard brain by combin-
139 ing the Occipital Lobe ROI from the MNI Structural Atlas and the following ROIls from the Harvard-Oxford
10 Cortical Structural Atlas: Inferior Temporal Gyrus (temporoocipital part), Lateral Occipital Cortex (superior
11 division), Lateral Occipital Cortex (inferior division), Intracalcarine Cortex, Cuneal Cortex, Parahippocam-
12 pal Gyrus (posterior division), Lingual Gyrus, Temporal Occipital Fusiform Cortex, Occipital Fusiform Gyrus,
13 Supracalcarine Cortex, Occipital Pole. Each ROl was thresholded at 10% and then concatenated together to
14a  Create a single mask of visual cortex.

145 To identify which contacts to include in analyses on a per-patient basis, this standard space visual cor-
s tex mask was transformed into each participant's native space. We registered each patient's pre-operative
17 anatomicalscanto the MNIT1 2mm standard brain template using linear registration (FSL FLIRT (Jenkinson and Smith,
18 2007; Jenkinson et al., 2002)) with 12 degrees of freedom. This registration was then inverted and used to
10 bring the visual cortex mask into each participant's native space.

150 In order to ensure that the visual cortex mask captured the anatomical areas we intended, we manually
151 assessed its overlap between the electrodes and made a few manual adjustments to the electrode defini-
12 tion. For example, due to noise in the registrations between post-operative and pre-operative space, as well
153 as from pre-operative space and standard space, some grid and strip contacts appeared slightly outside of
15 the brain, despite being on the surface of the patient's brain. Thus, contacts such as these were included as
15 “visual” even if they were slightly outside of the bounds of the mask. Additionally, due to the liberal thresh-
156 0lds designed to capture broad visual regions, some portions of the parahippocampal gyrus area contained
157 the hippocampus. Contacts within mask boundaries but clearly in the hippocampus were excluded.

15 EXperimental Design

150 Participants completed the experiment on a MacBook Pro laptop while seated in their hospital bed. The task
160 consisted of up to four runs: two runs of the Structured block and two runs of the Random block. We aimed
161 to collect all four runs from each patient, but required a minimum of one run per condition for subject
12 inclusion. Given that the order of structured vs. random information can impact learning (Jungé et al.,
163 2007; Gebhart et al., 2009), the run order was counterbalanced within and across participants (i.e., some
s participants received Structured-Random-Random-Structured and others Random-Structured-Structured-
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Figure 2. Electrode coverage. The contact locations on the grid, strip, and/or depth electrodes for each participant are
plotted as circles in standard brain space. Contacts colored in blue were localized to the visual cortex mask.
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Random). Participants completed the runs across 1-3 testing sessions based on the amount of testing time
available between clinical care, family visits, and rest times.

Each run consisted of an encoding phase and a memory phase. During the encoding phase, participants
viewed a rapid stream of scene images, during which they were asked to passively view the scenes. Partici-
pants were told that their memory for the scenes would be tested in order to encourage them to pay close
attention. Each scene was presented for 267 ms, followed by a 267 ms inter-stimulus interval (ISl) period
during which a fixation cross appeared in the center of the screen. These short presentation times were cho-
sen to optimize the task for the frequency tagging analyses, which involves measuring neural entrainment
to stimuli.

Within each run, participants viewed a series of images from a set of six scene categories. There were
six categories in the Structured block, and six other categories in the Random block. In the Structured block,
the scenes categories were paired, such that images from one scene category (A) were always followed by
an image from another scene category (B). Thus, A scenes were predictive of the category of the upcoming
B scenes, or stated another way, the category of B scenes was predictable given the preceding A scenes.
No scene pairs were allowed to repeat back-to-back in the sequence. In the Random block, all six scene
categories (X) could be preceded or followed by any other scene category, making them neither predictive
nor predictable. No individual scene categories were allowed to repeat back-to-back.

In total, participants viewed 16 exemplars from each category within each run. To assist patients with
remembering these briefly presented images, each individual exemplar was shown four times within a run.
Thus, each run was comprised of 16 “subblocks” during which the same set of six exemplar images was
repeated four times (384 trials total). Within each subblock, the order of the pairs/images was randomized,
with the constraints described above of no back-to-back repetitions. The individual exemplars changed after
each subblock, but the category relations were held constant in the Structured block. Participants were not
informed of these category pairings, and thus had to acquire them through exposure.

At the end of each run, participants completed a memory test. Participants were presented with all
96 unique images from the encoding phase, intermixed with 24 novel foils from the same categories (4
foils/category). Participants first had to indicate whether the image was old, meaning it was just presented
inthatrun’s encoding phase, or new, meaningthatthey had not seen thatimage atall during the experiment.
Following their old/new judgment, participants were asked to indicate their confidence in their response, on
a scale of 1 (very unsure) to 4 (very sure). Participants had up to 6 s to make each old/new and confidence
judgment. We quantified episodic memory performance using A’, a non-parametric measure which takes
into account hit rate (HR) and false alarm rate (FA) (Grier, 1971):

A'=5+(HR-FA)«(1+ HR— FA)/(4* HR * (1 — FA))

Frequency tagging analyses

We conducted a phase coherence analysis to identify electrode contacts that entrained to image and pair fre-
quencies (Henin et al., 2021). For both Structured and Random blocks, the raw signals were concatenated
across runs (if more than one per block type) and then segmented into subblocks comprising 24 trials with
the four repetitions per exemplar. We then converted the raw signals for each subblock into the frequency
domain via fast Fourier transform and computed the phase coherence across subblocks for each electrode
using the formula R? = [ZNcos¢]? + [ZV sing]*. Notably, by computing phase coherence between subblocks,
we collapsed over the contribution of individual exemplars that repeated within subblock. In other words,
entrainment in this analysis was driven by phase-locking that generalized across exemplars. Phase coher-
ence was computed separately for each contact in the visual cortex mask, and we then averaged across
contacts within participant. We focused on phase coherence at the frequency of image presentation (534
ms/image; 1.87 Hz) and pair presentation (1.07 s/pair; 0.93 Hz).

Category evidence analyses
We employed a multivariate pattern similarity approach to assess the timecourse of category responses.
We identified patterns of multivariate activity associated with each category across contacts, frequencies,



212 and time. These category patterns, or “templates”, were defined during the memory phase of the dataset.
213 This was important because the order of categories was random during the memory phase, allowing for
214 an independent assessment of each category across condition regardless of any pairings. We then used
215 these templates to examine category-specific evoked responses during the encoding phase, to assess the
216 presence and timing of category evidence (e.g., for the on-screen category or the upcoming category). The
217 following subsections explain this approach in detail.

218 Frequency decomposition

210 Weemployed a Morlet Wavelet approachto decompose raw signals into time-frequency information (Figure 3A).
220 We convolved our data with a Complex Morlet Wavelet (cycles = 4) at each of 50 logarithmically spaced
221 frequencies between 2 and 100 Hz to extract the power timecourse at each of these 50 frequencies. This
222 analysis was done separately for each encoding and memory phase of each run, and the data were z-scored
223 across time within each frequency and contact. This procedure was applied across the unsegemented time-
224 courses; we then subsequently carved into trials using the triggers, yielding a vector of frequency and con-
225 tactinformation at each timepoint within a trial.

226 Subsequent analyses required that each trial have the same number of timepoints. However, memory
227 trials were variable lengths, as participants had up to 6 s to respond. There was also slight variability in the
226 encoding trials (most trials were 138 samples long, but some were 136 or 137 samples). To account for this,
220 We considered only the first 138 samples of each memory trial and treated each encoding trial as having
230 138 samples (interpolating missing timepoints by averaging the last sample of the trial with the first sample
231 of the next trial).

.2 Category decoding

233 First, we verified that the multivariate patterns contained category-specific information. We constructed a
232 setof 30 binary classifiers to distinguish among two categories of a given condition (Figure 3B): A1-A2, A1-A3,
235 A1-B1, A1-B2, A1-B3, A2-A3, A2-B1, A2-B2, A2-B3, A3-B1, A3-B2, A3-B3, B1-B2, B1-B3, B2-B3, X1-X2, X1-X3, X1-
236 X4, X1-X5, X1-X6, X2-X3, X2-X4, X2-X5, X2-X6, X3-X4, X3-X5, X3-X6, X4-X5, X4-X6, X5-X6. We employed a linear
237 support vector machine approach using the SVC function in Python's scikit-learn module, with a penalty
238 parameter of 1.00. We used all of the trials (both old and new exemplars of a category) from the memory
230 runs to train and test the classifiers and build the subsequent category templates. Thus, there were 20
220 samples per category for participants who had one run of a condition and 40 samples per category for
221 participants who had two runs of a condition. We split these samples into two-thirds training and one-third
2a2  test (all within the memory phase), and iterated over the three train-test splits.

243 First, we independently trained classifiers on a single timepoint (each of the 138 timepoints within a trial)
242 and tested each classifier on all 138 timepoints at test. To validate that we were able to discriminate the
245 Categories above chance, we averaged over all train-test combinations and computed overall classification
246 ACCUracy.

2z Feature selection

2as We next aimed to identify the set of timepoints that produced the best category discrimination. We rea-
220 Soned that time within a trial would be an important contributor to variance in discriminability, as we would
250 Notnecessarily expect that timepoints very early onin a trial immediately after image onset) would produce
251 high discrimination between categories. We also reasoned that the best timepoint(s) may differ from par-
252 ticipant to participant depending on their electrode coverage. Therefore, we devised a participant-specific
253 timepoint feature selection process. Importantly, these feature selection steps were conducted within the
2:sa memory phase data (the same data on which the templates were trained), which were independent of the
255 test data of interest (encoding phase data).

256 Using the classifier output described above, we averaged the classification over the 138 test timepoints
257 to assess how well training at every timepoint generalized to all other timepoints within a trial. We con-
2ss  ducted this analysis for all 30 classifiers and averaged performance over classifiers, yielding a mean classi-
250 fication performance associated with each training timepoint. For each participant, we then computed the
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Figure 3. Category evidence analysis pipeline. (A) A Morlet wavelet approach was used to extract time-frequency
information from contacts in visual cortex. This resulted in contact by frequency vectors for every timepoint of
encoding phase and memory phase trials, which served as the neural patterns for subsequent analysis steps. (B) To
identify the neural patterns that distinguished between categories, we ran a series of binary classifiers for every pair of
categories from the memory phase trials. These classifiers were trained on the contact by frequency vectors for a single
timepoint or set of timepoints. The classifiers were then tested on timepoints from held-out data. (C) After a series of
feature selection steps, we chose the per-participant top-N timepoint set that produced the best classification accuracy,
and then averaged contact by frequency vectors across those timepoints (across all exemplars of a given category) to
create a “template” of neural activity for each category. (D) We then correlated the template for each category from the
memory phase with the contact by frequency vector at each timepoint of each trial/exemplar from that category during
the (independent) encoding phase, yielding a timecourse of pattern similarity reflecting neural category evidence.
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rank order of timepoints with respect to their classification, such that the first ranked timepoint was the
one that yielded the highest classification, and the last ranked (138th) timepoint is the one that yielded the
lowest classification.

To identify the set of training timepoints producing the best category classification for a given participant,
we repeated the pairwise classification procedure above iteratively training on an increasing number of
timepoints, adding from highest to lowest ranked. Thus, these classifiers ranged from training on the single
top timepoint, to all 138 timepoints. We again conducted this analysis for all 30 classifiers and averaged
performance across them, yielding a mean classification performance associated with the 138 sets of top-N
timepoints. We ranked this classification performance again to determine which number of top timepoints
produced the highest classification. This number was used to define the templates.

Template correlations

Using the set of training timepoints for each participant determined in the feature selection process, we then
computed a neural template for each category (Figure 3C). We extracted the pattern of activity (i.e., a vector
containing electrode contact, time, and frequency) for all instances of a given category during the memory
phase, including both old and new images. We then averaged over the timepoints in that participant’s
training set. The resulting category pattern vector retained spatial (contact) and frequency information.

To assess the timecourse of neural evidence for a category during the encoding phase, we extracted
the pattern of activity (contact and frequency) for each timepoint of every trial of that category (Figure 3D).
We computed the Pearson correlation between the template and the activity pattern separately for each
timepoint within a trial, yielding a timecourse of similarity to the template. The resulting Pearson correlation
values were Fisher transformed into z values.

We were interested in characterizing the timecourse of a category response not only while that category
was on the screen, but also during the surrounding trials. We may observe evidence for a category before
it appears, if it can be predicted (as hypothesized for B), or after it disappears, if its representation lingers.
Thus, we assessed the timecourse over a window comprising the on-screen category's trial (“Current”) and
the two neighboring trials (“Pre” and “Post” trials). To quantify the response, we subtracted a baseline of
average evidence for the other categories of the same condition (e.g., for category A1, how much evidence
is there for A1 relative to categories A2 and A3?). For the X categories, which could appear in any order, we
ensured that the categories included in the baseline did not appear during the “Pre” and “Post” trials. This
baselining approach was important for ensuring that effects were not driven by a generic evoked response
(to any category), but rather by specific evidence for the relevant category.

We quantified how template similarity changed over time within trial by splitting the trials into “ON” and
“ISI" epochs. The ON epoch refers to the part of the trial when the image was on the screen (the first 69
samples, or 267 ms). The ISI epoch refers to the part of the trial after the image disappeared from the screen
during the inter-stimulus fixation cross (the second 69 samples, or latter 267 ms).

Subsequent memory

To assess how variance in category evidence across trials related to memory outcomes for those trials,
we examined predictive and on-screen representations separately for subsequently remembered versus
forgotten trials. We conducted this analysis separately for memory of A (as a function of Perceived evidence
for A during A and Predicted evidence for B during A) and for memory of B (as a function of Perceived
evidence for B during B and Predicted evidence for B during A). Because each image was shown four times,
we first averaged the Perceived and Predicted evidence over these four trials. We considered the ISl epoch
of each trial, as this was the epoch in which we observed reliable evidence for the Predicted category B
during A. As a control analysis, we repeated these steps for the X trials from the Random blocks.

Alternative classification approaches for feature selection

The category evidence analyses described above rely on a set of binary classifiers trained to distinguish the
categories in a given condition (i.e., all combinations of As and Bs in the Structured condition and Xs in the
Random condition). However, this approach may lead to interpretational issues. For example, from a binary



s0s  Classifier trained to distinguish two categories (e.g., A1 vs. B1), it is difficult to know whether evidence for
300 OnNe category (e.g., A1) reflects the presence of that category (A1) or the absence of the other category (B1).
310 Thus, we replicated all of the above analyses using two alternative approaches.

311 First, we trained a 6-way classifier to distinguish among all six categories of a given condition (A1-A2-
a1z A3-B1-B2-B3 for Structured and X1-X2-X3-X4-X5-X6 for Random). By including more than two classes, this
a1 approach addresses the concern that classification accuracy could be driven by the presence or absence
a2 Of a given category. Second, we retained the binary classification approach but trained classifiers to only
a5 discriminate within the A or B categories. That is, instead of 15 classifiers for A/B combinations, there were
a6 6 classifiers (A1-A2, A1-A3, A2-A3, B1-B2, B1-B3, B2-B3). This approach ensures that classification does not
;17 mix evidence for predictive vs. predicted categories.

318 For both of these approaches, we employed a linear support vector machine approach using the SVC
310 function in Python's scikit-learn module, with a penalty parameter of 1.00 (same as the primary classification
320 approach). We then repeated the same feature selection steps using these alternative classifiers, and used
321 the output of the top-N timepoint analyses to create new templates.

;2 Statistical analysis

323 For all analyses (both behavioral and neural), statistical significance was assessed using a random-effects
324 bootstrap resampling approach (Efron and Tibshirani, 1986). For each of 10,000 iterations, we randomly
;25 resampled participants with replacement and recomputed the mean across participants, to populate a sam-
326 pling distribution of the effect. This sampling distribution was used to obtain 95% confidence intervals and
32z perform null hypothesis testing. We calculated the p-value as the proportion of iterations in which the re-
s2s sampled mean was in the wrong direction (opposite sign) of the true mean; we then multiplied these values
320 by 2 to obtain a two-tailed p-value. All resampling was done in R (version 3.4.1), and the random number
330 seed was set to 12345 before each resampling test. This approach is designed to assess the reliability of
sn effects across patients: a significant effect indicates that which patients were resampled on any given itera-
332 tion did not affect the result, and thus that the patients were interchangeable and the effect reliable across
333 the sample.

22 Results

;s Memory behavior

a3s  We first assessed overall performance in the recognition memory test to verify that participants were able
337 to encode the images into memory. We computed A’, a non-parametric measure of sensitivity (Grier, 1971),
s3s  fromtest judgments for items from both Structured and Random blocks. All participants had an A’ above the
s3s  chance level of 0.5 (mean = 0.68; 95% Cl = [0.64, 0.70], p <0.001; Figure 4A) indicating reliable memory. This
a0 Was driven by a higher hit rate (mean = 0.51) than false alarm rate (mean = 0.32; difference 95% Cl = [0.14,
sa 0.23], p <0.001). The proportions of items that were subsequently remembered (hit rate) or forgotten (1-hit
a2 rate, or misses) were roughly matched on average, yielding balanced power for within-subject subsequent
33 memory analyses.

348 We then assessed how statistical learning affected recognition memory. Based on our prior work (Sherman and Turk-Browne,
a5 2020), we hypothesized that the hit rate for items from the predictive A categories in the Structured blocks
aas  Would be lower than the hit rate for items from the control X categories in the Random blocks. Indeed, we
a7 replicated this key behavioral finding (Figure 4B), with a significantly lower hit rate for A (mean = 0.48) than
s X(mean = 0.52; difference 95% Cl = [-0.076, -0.010], p = 0.012). The hit rate for B (mean = 0.51) did not differ
a0 from A (difference 95% Cl = [-0.10, 0.059], p = 0.51) or X (difference 95% CI = [-0.094, 0.053], p = 0.66).

350 The false alarm rate for X (mean = 0.36) was numerically higher than A (mean = 0.28; difference 95%
;1 Cl =[-0.0023, 0.16], p = 0.064); X was significantly higher than B (mean = 0.29; difference 95% Cl = [0.0069,
2 0.13], p = 0.028), though A and B did not differ (difference 95% CI = [-0.074, 0.056], p = 0.82). Unlike the
sz higher hit rate for X than A, which was specifically hypothesized based on prior work, the marginally higher
3sa  false alarm rate for X than A was not expected or consistent with previous experiments. Nevertheless, this
sss  complicates interpretation of the hit rate difference as impaired memory for A vs. X. One difference from
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Figure 4. Behavioral results. (A) Overall memory performance collapsed across conditions. A’ (a sensitivity measure for
recognition memory) is depicted for each participant as a circle. All participants were above chance (0.5). (B) Hit rate as
a function of condition (A: predictive; B: predictable; X: control). Group means are plotted as bars, with errors bars
representing the bootstrapped 95% confidence interval across participants. Individual participant data are overlaid with
the grey circles and lines.

the prior study is the blocking of Structured (A,B) and Random (X) categories, which may have allowed for
differences in strategy or motivation between conditions. Nevertheless, the main memory hypotheses in
the current study rest within the A condition (i.e., which A items are remembered vs. forgotten as a function
of B prediction), rather than on overall condition-wide differences with X (or B).

We additionally examined the timecourse of these memory effects by sorting the items into subblocks.
If the deficit in memory for A items arises from the predictive value that they confer, we might expect
that this effect will emerge over time as learning occurs (Sherman and Turk-Browne, 2020). We focused
this analysis on the first Structured run of the encoding phase for each participant, in order to equate the
amount of data and corresponding opportunity for learning across participants (some had one run, others
two). We quantified change over time for each participant as the Spearman rank correlation of subblock
number with hit rate for A (averaged across items in each subblock), expecting a negative correlation. The
resulting within-participant relationship was not reliable at the group level (mean rho = -0.038; 95% Cl =
[-0.27,0.19], p = 0.77). This null effect of a learning trajectory stands in contrast with what we observed in
Sherman and Turk-Browne (2020), perhaps related to the smaller number of participants or differences in
task design (e.g., the use of 'subblocks’) in the current study.

Neural frequency tagging
To provide a neural check of statistical learning of the category pairs in the Structured blocks, we measured
entrainment of neural oscillations in visual electrode contacts to the frequency of individual images and
image pairs (Figure 5A). We expected strong entrainment at the image frequency in both the Structured and
Random blocks, as this reflects the periodicity of the sensory stimulation. Critically, we hypothesized that
there would be greater entrainment at the pair frequency in Structured compared to Random blocks. This
provides a measure of statistical learning because the pairs only exist when participants extract regularities
over time in the transition probabilities between categories in the Structured blocks.

Consistent with our hypotheses and prior work (Henin et al., 2021), there were distinct peaks in phase
coherence at both the image and pair frequencies in Structured blocks, but only at the image frequency in
Random blocks (Figure 5B). To confirm the reliability of these peaks, we contrasted the coherence at the

12



A

sy v e 5

Pair Frequency \/_\/W

Pair Frequency Image Frequency

— 06 ! '
[a d !
N 1
v |
g |
o 04 :
o !

1 1
- I ;
o ! !
O ' '
5 02 | !
= : :
= '
| 1
E 1
+ o0 . : Structured
- o5 10 5 20 Random

Frequency (Hz)

Image
Effect
04
b=
<
(@]
E oo
00F oL
! 8 p) 3 3 ) & 7
Subblocks included Subblocks included

Figure 5. Neural frequency tagging analysis. (A) Schematic of analysis and hypothesized neural oscillations. We expect
entrainment of visual contacts at the frequency of images in both blocks. In the Structured block, we also expect
entrainment at the frequency of category pairs. (B) These hypotheses were confirmed, with reliable peaks in coherence
at the image and pair frequencies in Structured blocks but only at the image frequency in Random blocks. (C) We
examined the emergence of entrainment over time by measuring the difference in coherence at the frequency of
interest, relative to the two neighboring frequencies, as we iteratively increased the number of subblocks from the start
of the run included in the analysis. Left: Coherence at the pair frequency emerged over time in the Structured block
(reaching significance by the 13th subblock and beyond) but not in the Random block. Right: Coherence at the image
frequency was high in both blocks, regardless of how many subblocks were included. Error bands indicate the 95%
bootstrapped confidence intervals across participants.
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frequency of interest (image: 1.87 Hz; pair: 0.93 Hz) against a baseline of the coherence at frequencies
neighboring each of the frequencies of interest (+0.078 Hz). At the image frequency, there were reliable
peaks in both the Structured (mean difference = 0.46; 95% Cl = [0.37, 0.55], p <0.001) and Random blocks
(mean difference = 0.42; 95% Cl = [0.28, 0.52], p <0.001). At the pair frequency, there was a reliable peak
in Structured blocks (mean difference = 0.059; 95% CI = [0.035, 0.084]), p <0.001), but not Random blocks
(mean difference = -0.0027; 95% Cl = [-0.016, 0.0085], p = 0.68).

Further, the peakin coherence at the pair frequency in Structured blocks was reliably higher than that in
Random blocks (mean difference = 0.058; 95% CI = [0.035, 0.083], p <0.001), confirming the pair frequency
effect was specific to when there was structure in the sequence. There were no differences in coherence at
theimage frequency across conditions (mean difference = 0.018; 95% CI =[-0.010, 0.048], p = 0.25). Together,
these results provide strong evidence that visual regions represented the paired categories during statistical
learning.

To measure the emergence of these entrainment effects over time, we computed the coherence over an
iteratively increasing number of subblocks (Henin et al., 2021). Specifically, we first computed the coherence
across the first two subblocks, then the first three, and so on, up to all 16 subblocks. As in the behavioral
timecourse analyses, we only included the first 16 subblocks per participant (corresponding to the first run
of a given condition) in order to equate the opportunity for learning effects across participants. To quantify
neural entrainment, we computed the difference in coherence between the frequency of interest and the
two neighboring frequencies (as we did above to establish whether peaks were reliable). We then assessed
the reliability of that difference, relative to 0, across participants. We hypothesized that coherence at the pair
frequency would emerge over time in the Structured condition, but that coherence at the image frequency
would be consistently high, even at early timepoints.

In the Structured condition, the pair frequency was consistently reliable by the 13th subblock (mean ITC
difference = 0.035; 95% Cl = [0.0011, 0.071], p = 0.043), with each subsequent subblock also exhibiting a
reliable peak in coherence at the pair frequency (ps <0.001; Figure 5C, left). Confirming that this effect was
specific to the Structured condition, we did not find reliable peaks in coherence at the pair frequency across
any number of subblocks in the Random condition (ps >0.30).

In contrast to the pair frequency that required learning, the image frequency should be driven by the
stimuli and thus present early in both conditions. Indeed, coherence at the image frequency was reli-
ably high across all numbers of subblocks, in both the Structured and Random conditions (all ps <0.001;
Figure 5C, right). This lends credence to the interpretation of increasing coherence at the pair frequency
over time as reflecting a trajectory of learning.

Given our interpretation that entrainment to the pair frequency reflects statistical learning, and given
that we expect our key behavioral effect (impaired memory for predictive A items) to depend on statisti-
cal learning, we next asked whether these two effects are related. We calculated this relationship within-
participant given the small sample for estimating across-participant relationships. Coherence is necessarily
measured across trials, and thus we could not relate entrainment on a given trial to memory for that trial.
Instead, we computed coherence across neighboring subblocks and estimated neural entrainment to the
pairs as the difference in coherence at the pair frequency from the two adjacent frequencies. We then
related this neural measure to average A hit rate within the latter of the two neighboring subblocks, expect-
ing a negative relationship (stronger pair entrainment associated with worse A memory). For example, the
coherence between subblocks 1 and 2 was used to predict behavioral memory in subblock 2 (memory in
subblock 1 was excluded from this analysis). The within-participant relationship between neural entrain-
ment to pairs and A memory showed a trend at the group level (mean rho =-0.13; 95% Cl = [-0.25, 0.020], p
=0.089), though importantly 6/7 participants showed a negative correlation. We repeated this analysis for
the image frequency as a control, and found no relationship between neural entrainment to images and A
memory (mean rho =-0.072; 95% Cl = [-0.24, 0.087], p = 0.42).

Scene category decoding and template creation

The neural frequency tagging for pairs in Structured blocks indicates statistical learning of the pairs. This
learning should create predictive value for the items from the A categories, which afford a prediction of
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Figure 6. Category decoding and feature selection. (A) To establish overall category decoding accuracy, we trained and
tested binary category classifiers separately for all individual timepoints, yielding a temporal generalization matrix. (B)
As a first feature-selection step, we computed the average classification accuracy (across pairwise classifiers) for each
training timepoint and participant (colored lines). We then ranked the timepoints by classification accuracy. (C) To select
the set of timepoints that produced the best classification for a given participant, we trained and tested the category
classifiers on an increasing number of timepoints, starting with the best-performing timepoint identified in (B) and
iteratively adding timepoints by rank. We then computed the per-participant average classification accuracy for each
set of timepoints. (D) Histogram depicting which training timepoints were selected for template creation for all
participants (e.g., count = 3 indicates that that timepoint was included for 3 of the 7 participants).

the associated B category. To test for these predictive representations, we employed a multivariate pattern
similarity approach that extracted neural evidence for visual categories. For each category, we created a
neural template based on the pattern of time-frequency information evoked by each category across visual
contacts. These templates were optimized through a series of a steps (described below) for each participant
to ensure maximum category discriminability.

First, to verify that the scene categories were indeed discriminable, we developed a series of binary clas-
sifiers to distinguish among the scene categories. Because we were interested in ultimately selecting the
timepoints that produced the best category discrimination, we trained classifiers on a single timepoint (each
of the 138 timepoints within a trial) and tested each classifier on all 138 timepoints at test. Figure 6A illus-
trates the classification performance across all of these binary classifiers, averaged across participants. At
the group level (averaging across all train-test combinations), classification performance was above chance
(mean = 0.528; 95% ClI = [0.514, 0.542], p <0.001), with each individual participant exhibiting classification
performance greater than the chance level of 0.5.

We next aimed to select the training timepoints (per participant) that exhibited the best category dis-
crimination. For each participant and training timepoint, we averaged classification accuracy across all test
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timepoints (Figure 6B). We then ranked the training timepoints by classification accuracy. Next, to find the
set of training timepoints that produced the best classification, we re-ran our classification procedure, but
training on anincreasing number of timepoints, starting with the best-performing timepoint, and iteratively
adding timepoints per rank. We then computed the per-participant average classification accuracy for each
set of timepoints Figure 6C). Verifying that this feature selection approach worked to optimize category dis-
criminability, we indeed found that using the per-participant top-N timepoints yielded higher classification
accuracy than averaging across all timepoints (mean accuracy = 0.554; 95% Cl = [0.536, 0.571], p <0.001);
this was independently true for each participant.

We used these per-participant top-N timepoints to create templates of each category. Figure 6D illus-
trates the training timepoints which were included in the templates, for one or more participants. To con-
struct the templates, we averaged the contact-by-frequency vectors across the top-N timepoints for all ex-
emplars of a given category. We then aimed to quantify the expression of these category templates during
learning (e.g., during the presentation of a predictive A item, is there a representation of the upcoming
B item?). However, given that these templates were created from the memory phase, after learning had
already occurred, it is important to ensure that the templates of paired categories themselves were not
correlated with each other; if so, any effects of prediction during learning could be confounded. At the
group level, the templates of paired categories (e.g., A1-B1) were no more correlated than the templates of
unpaired Structured categories (e.g., A1-B2; mean difference = 0.024; 95% Cl = [-0.019, 0.069], p = 0.30) or
Random categories (e.g., X1-X2; mean difference = 0.047; 95% Cl = [-0.032, 0.127], p = 0.25).

Category evidence during learning

To test for evidence of predictive value, we quantified the expression of these templates in the Structured
and Random blocks. As a check, we expected clear neural evidence for the category of the item being pre-
sented on the screen. Critically, we hypothesized that neural evidence for the upcoming B category would
manifest before its appearance, in response to an A exemplar. We measured these temporal dynamics of
neural category evidence by creating a window of three trials centered on the currentitem: the trial preced-
ing a trial in which the item appeared (“Pre”), the trial during which the item was on the screen (“Current”),
and the trial succeeding the trial in which the item appeared (“Post”). For example, if category Pair 1 involved
beaches (A1) being followed by mountains (B1), neural evidence for the mountain category was calculated
in response to beach exemplars (Pre), mountain exemplars (Current), and exemplars from the categories
that could appear next in the Structured sequence (A2 or A3 categories). These evidence values were aver-
aged across the categories from the same condition (e.g., B1, B2, and B3 for condition B) and plotted over
time (Figure 7A). For statistical analysis, we averaged the neural category evidence for each category across
the timepoints within 6 epochs: when Pre, Current, and Post images were on the screen (“ON") and dur-
ing the fixation period between these trials (“ISI"; Figure 7B). We anticipated the evoked response to each
image would span ON and ISI periods (as neural processing of the image would take longer than 267 ms),
but subdividing in this way allowed us to test for the emergence of predictive evidence of B during the ISI
immediately prior to its onset.

For Current trials (i.e., the trial when the target category was on screen), we found robust (perceptual)
evidence for both A and B across both the ON epoch (A: mean = 0.0088; 95% Cl = [0.0046, 0.013], p <0.001;
B: mean = 0.012; 95% Cl = [0.0066, 0.018], p <0.001) and ISI epoch (A: mean = 0.012; 95% CI = [0.0084,
0.015], p <0.001; B: mean = 0.014; 95% ClI = [0.0083, 0.019], p <0.001). Neural evidence for X categories
from Random blocks was not reliable during the ON epoch (mean = 0.0046, 95% CI = [-0.00075, 0.012], p
= 0.13) but became robust later in the trial during the ISI epoch (mean = 0.0074; 95% CI = [0.0030, 0.013],
p <0.001). There was greater evidence for B than X categories during both ON (mean difference = 0.0077;
95% Cl = [0.00058, 0.015], p = 0.031) and ISI epochs (mean difference = 0.0065; 95% C| = [0.00061, 0.012], p
=0.031). Considering X as a baseline, this difference shows enhanced perceptual processing of predictable
categories. Neural evidence did not differ between A and B categories (ps >0.38) or A and X categories (ps
>0.28).

For Pre trials (i.e., the trial before the target category appeared), we found the hypothesized predictive
neural evidence for the B categories during the ISI epoch (just after its paired A category appeared; mean =

16



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

HON
0.03 | IN] Rk Fkk
009 0.02 ° - ®
0.01 0.1 . i% : I
0.00 ! 0.00+ },:,_ e L.
-0.01 . X °
-001 o
-002{ ON ISl v ON | sl 1 ON 15| 9 *k
o Pre Current Post 5
e : 5
e *kkk kkk
w 004 X other B )
§ 293 =, ! % 002 «
& 002{| | . I .
T o0l I ° 1 H
> ) I [
2 000 __¥__. ______ - __E__
5 -001
5o
"= _002 °
£
n
%%k
0.03 o
0.02 .
4
001 . i I R
0.00 ! T.i__ _,-+I--
-001 ! °
-002 !
-05 0.0 05 1.0 Pre Current Post
Time (sec) Trial period

Figure 7. Neural category evidence. (A) Time course of similarity between patterns of neural activity in visual contacts
evoked by exemplars from A (predictive), B (predictable), and X (control) categories and category template patterns for
A, B, and X, respectively, baselined to average evidence for the other categories of the same condition. Inset shows raw
pattern similarity before baseline subtraction for the category template of interest (dark) and the average of the other
category templates from the same condition (light). Error bands were removed for ease of visualization. Current refers
to the trial when the item was presented, Pre refers to the trial before the item was presented, and Post refers to the
trial after the item was presented. For each row/condition, the Pre, Current, and Post trials are compared to the same
category template (Current). Error bands reflect the bootstrapped 95% confidence intervals across participants (i.e., any
timepoint whose band excludes 0, p <0.05). (B) Average pattern similarity collapsed across timepoints within ON
(stimulus on screen) and ISI (fixation between stimuli) epochs. Each dot represents an individual participant. Bars
represent the means across participants and error bars indicate the bootstrapped 95% confidence intervals. *p <0.05;
**p <0.01; ***p <0.001
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0.0037; 95% Cl =[0.00054,0.0071], p =0.019). B evidence was not present during the ON epoch earlierin the
Pre trials (while its paired A category was on screen; mean = 0.00063; 95% Cl| = [-0.0030, 0.0046], p = 0.78);
this may reflect the time needed for associative reactivation of the B category after perceptual processing of
the A item, or anticipation of the timing when B will appear (at the end of the Pre trial). Further supporting
our interpretation that Pre evidence of the B categories reflects prediction, no such evidence was observed
for X during ON (mean =-0.0015; 95% Cl = [-0.0039, 0.0012], p = 0.26) or ISI epochs (mean = -0.00031; 95%
Cl=[-0.0021, 0.0015], p = 0.73) or for A during the ISl epoch (mean =-0.0012; 95% Cl = [-0.0048, 0.0025], p =
0.53). There was negative evidence for the upcoming A category during the ON epoch of the Pre trial (mean
=-0.0043; 95% Cl = [-0.0072, -0.0013], p = 0.0052), but this may have been artifactual (see below). When
contrasting prediction-related signals across conditions, Pre neural evidence for the B categories during
the ISl epoch was reliably greater than X categories (mean difference = 0.0040; 95% Cl = [0.00016, 0.0075],
p =0.042) and marginally greater than A categories (mean difference = 0.0049; 95% CI = [-0.00051, 0.010],
p =0.075).

For Post trials (i.e., the trial after the target category appeared), we found reliable neural evidence for
the A categories during the ON epoch (i.e., while its paired B category was on screen; mean = 0.0055; 95%
Cl =[0.0017, 0.0091], p = 0.0018); this effect was not significant during the ISI epoch (mean = 0.0041; 95%
Cl =[-0.0011, 0.0098], p = 0.13). We did not find Post evidence of B or X categories during either ON or ISI
epochs (ps >0.80), nor was Post evidence for A reliably stronger than B or X (ps >0.16). Positive evidence of A
during the Post trial may be related to the negative evidence of A during the Pre trial noted above. Because
no back-to-back pair repetitions were allowed, in an A1-B1-A2-B2 trial sequence, A1 and A2 were different
categories. A1 evidence during B1 was considered a Post trial for the A condition, whereas A2 evidence
during B1 was considered a Pre trial for the A condition. Because A1 was one of two baseline categories for
A2 (along with the third A category, A3), Post evidence for A1 during B1 would have been subtracted from
Pre evidence for A2, leading to a negative effect. We tested this by comparing evidence for A2 (Pre) and A1
(Post) during B1 to the neutral A3 only. This weakened the negative Pre evidence for A, during ON (mean =
-0.0027; 95% CI = [-0.0054, 0.00], p = 0.058) and ISI epochs (mean = 0.00048; 95% Cl = [-0.0022, 0.0038], p =
0.82). However, the positive Post evidence for A during the ON epoch remained significant (mean = 0.0081;
95% Cl = [0.0036, 0.014], p <0.001).

The findings above rely on category templates optimized based on a set of binary category classifiers.
To ensure that our results are robust to these specific feature selection steps, we re-ran our analyses using
two different approaches for template creation.

First, we created category templates from a 6-way classifier that simultaneously learned to distinguish
the patterns from all categories of a condition. As a check, we first confirmed that this method produced
the same results for Current items. Indeed, as above, we found reliable evidence for both A and B items,
during the ON (A: mean = 0.0095; 95% Cl =[0.0056, 0.014], p <0.001; B: mean =0.015; 95% CI =[0.010, 0.019],
p <0.001) and ISl periods (A: mean = 0.010; 95% Cl = [0.0060, 0.014], p <0.001; B: mean = 0.014; 95% Cl| =
[0.0085,0.019], p <0.001); evidence for X was reliable during the ISI (mean = 0.0059; 95% CI =[0.0026, 0.0099],
p <0.001), but not ON periods (mean =0.0037; 95% CI =[-0.0026, 0.012], p = 0.32). Critically, we replicated our
key finding of predictive B evidence during the Pre-IS| period (i.e., just after its paired A category appeared;
mean = 0.0035; 95% Cl = [0.00042, 0.0066], p = 0.025), as well as of lingering A evidence during the Post-ON
period (i.e., while its paired B category was on screen; mean = 0.0049; 95% ClI = [0.000059, 0.0095], p =
0.049).

Second, we retained the binary classification approach but limited the classifiers to category compar-
isons within A or within B, such that the classifiers did not learn to discriminate A vs. B. Although we ex-
pected that this approach would reduce the quality of feature selection by optimizing for fewer category
distinctions, it eliminated the possibility that mixing predictive and predicted categories may artificially in-
flate classification performance. This approach again produced qualitatively similar results, though slightly
weaker. We found reliable evidence for both A and B Current items, during the ON (A: mean = 0.0093; 95%
Cl1=[0.0060, 0.013], p <0.001; B: mean = 0.013; 95% Cl =[0.0076, 0.018], p <0.001) and IS periods (A: mean =
0.010; 95% Cl = [0.0063, 0.013], p <0.001; B: mean = 0.015; 95% Cl = [0.0097, 0.020], p <0.001); evidence for X
was reliable during the ISI (mean = 0.0078; 95% Cl = [0.0045, 0.012], p <0.001), but not ON periods (mean =
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0.0046; 95% Cl =[-0.0012, 0.012], p = 0.17). Further, we numerically replicated our key finding of predictive
B evidence during the Pre-ISI period (mean = 0.0038; 95% CI = [0.00, 0.0080], p = 0.050), though lingering A
evidence during the Post-ON period was no longer reliable (mean = 0.0022; 95% CI = [-0.0034, 0.0081]1, p =
0.47).

Taken together, these results show that statistical learning of the category pairs in Structured blocks
affected neural representations in the task. Not only did visual contacts represent the category of the first
and second items in a pair while they were being perceived (A and B evidence during ON and ISI epochs of
A and B, respectively), but also the first category during the second (A evidence during ON epoch of B) and
the second category during the first (B evidence during ISl epoch after A). This latter effect indicates that
the first item in a pair (from A category) had predictive value on average.

We again examined whether these predictive effects emerged over time, in the first run of the Structured
condition. For each participant, we computed the Spearman rank correlation of subblock number with
the mean predictive evidence for B (averaged across all A items in each subblock), expecting a positive
correlation. The resulting within-participant relationship was not reliable at the group level (mean rho =
0.012; 95% Cl = [-0.24, 0.24], p = 0.92). We also tested for a positive relationship across subblocks between
prediction of B during A and neural entrainment for pairs, given that we expect both measures to depend
upon statistical learning. However, this within-participant relationship was not reliable at the group level
(mean rho = 0.038; 95% Cl = [-0.12, 0.19], p = 0.67); nor was it reliable for neural entrainment to images
(mean rho =-0.11; 95% Cl = [-0.29, 0.079], p = 0.25).

Although we did not observe a clear learning trajectory, we can still leverage variability in prediction
across trials to understand the relationship between predictive value and memory.

Subsequent memory analysis

We theorized that items with predictive value are a lower priority for new encoding into episodic memory.
Here we test this relationship by comparing neural category evidence for remembered vs. forgotten items
within participants. That is, although A items had reliable predictive value on average, variability across
items may relate to subsequent memory. To the extent that prediction interferes with encoding, we hy-
pothesized that subsequently forgotten A items would elicit evidence for the upcoming B category during
their encoding. Critically, in contrast to prior analyses relating entrainment to memory or prediction, which
required measurements at the subblock-level, here we are able to probe the relationship between predic-
tion and memory at the level of individual trials.

Consistent with our hypothesis, B evidence during the ISI epoch after A (i.e., Predicted category) was
negatively related to subsequent A memory (Figure 8A): forgotten A items yielded reliable B evidence (mean
=0.0092; 95% Cl =[0.0023, 0.017], p = 0.0030), whereas remembered A items did not (mean = 0.0017; 95%
Cl=[-0.0016, 0.0049], p = 0.31). In contrast, A evidence during the ISI epoch after A (i.e., Perceived category)
was reliable for both remembered (mean =0.012; 95% CI =[0.0091, 0.015], p <0.001) and forgotten (mean =
0.014; 95% Cl = [0.0077, 0.021], p <0.001) A items. This differential effect of subsequent memory on neural
evidence for Perceived vs. Predicted categories during the ISl after Awas reflected in a significant 2 (evidence
category: A, B) by 2 (subsequent memory: remembered, forgotten) interaction (p <0.001). This interaction
was driven by a marginal difference in neural evidence for the Predicted B category during encoding of
subsequently forgotten vs. remembered A items (mean difference = 0.0075; 95% CI = [-0.00046, 0.016], p
=0.065), but no reliable difference in neural evidence for the Perceived A category by subsequent memory
(mean difference = 0.0022; 95% Cl = [-0.0050, 0.0094], p = 0.57).

As a control analysis, we performed the key steps above in the Random blocks. These blocks did not
contain pairs, and so we dummy-coded pairs of X items (X;-X, instead of A-B). In contrast to Structured
blocks, we did not expect that neural evidence of the “Predicted” X, category during the X, ISI would relate
to subsequent memory for X;. Indeed, there was no reliable evidence for the X, category for either remem-
bered (mean =-0.0029; 95% Cl = [-0.0069, 0.00084], p = 0.14) or forgotten (mean = 0.0011; 95% CI =[-0.0027,
0.0054], p = 0.57) X, items. In contrast, neural evidence for the Perceived X, category during the X, ISI was
reliable for both remembered X; items (mean = 0.010; 95% Cl = [0.0039, 0.019], p <0.001) and forgotten X,
items (mean = 0.0065; 95% Cl = [0.0022, 0.012], p <0.001).
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Figure 8. Subsequent memory analysis. A) Left: Timecourse of pattern similarity in visual contacts between A items
being encoded and the Perceived A (A during A) and Predicted B (B during A) category templates, as a function of
whether A items were subsequently remembered or forgotten. Right: Pattern similarity averaged within the ISI period,
the epoch in which we observed overall evidence of prediction, as a function of subsequent memory for A items (filled
bars = remembered; empty bars = forgotten). B) Left: Timecourse of pattern similarity in visual contacts between B
items being encoded and the Predicted B (B during A) and Perceived B (B during B) category templates, as a function of
whether B items were subsequently remembered for forgotten. Right: Pattern similarity averaged within the ISI period,
as a function of subsequent memory for B items. Error shading/bars reflect the bootstrapped 95% confidence interval
across participants. Each dot represents an individual participant. *p <0.05; **p <0.01; ***p <0.001
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We so far focused on the effects of prediction for memory of the item generating the prediction (A), but
what is the mnemonic fate of the item being predicted (B), which in this task with deterministic pairs always
appeared as expected? Whereas neural category evidence for B during the A ISI (Predicted) was negatively
related to subsequent memory for A items, the opposite was true for memory of B items (Figure 8B): re-
membered B items were associated with reliable prediction of B (mean = 0.0082; 95% CI = [0.0036, 0.012], p
<0.001), but forgotten B items were not (mean =-0.0028; 95% Cl = [-0.011, 0.0041], p = 0.49). In contrast, and
similar to A memory, evidence for B during the B ISI (Perceived) was reliable for both remembered (mean =
0.013; 95% Cl =[0.0082, 0.018], p <0.001) and forgotten (mean = 0.014; 95% Cl = [0.00096, 0.026], p = 0.034)
B items. We did not find an interaction between category and memory (p = 0.22). However, there was a
reliable difference in Predicted B evidence for remembered vs. forgotten B items (mean difference = 0.011;
95% Cl = [0.00060, 0.021], p = 0.039); Perceived B evidence did not differ as a function of memory (mean
difference = 0.00064; 95% Cl = [-0.014, 0.016], p = 0.89).

We repeated the same control analysis of Random blocks, but now focused on subsequent memory for
X, items (equivalent to B, rather than X; memory for A). Neural evidence for the “Predicted” X, category
during the ISI after X, was not reliable for either remembered (mean = 0.0013; 95% Cl = [-0.0020, 0.0043], p
=0.44) or forgotten (mean = -0.00048; 95% CI = [-0.0030, 0.0017], p = 0.75) X, items.

We again tested whether our key results generalized to templates created from two alternative classifica-
tion approaches. Using a 6-way classifier, we replicated the finding that forgotten A items were associated
with reliable predictive evidence of B (mean = 0.0075; 95% Cl = [0.0015, 0.014], p = 0.009), whereas remem-
bered A items were not (mean = 0.0026; 95% Cl| = [-0.00010, 0.0054], p = 0.061). In contrast, forgotten B
items were not associated with reliable predictive evidence of B (mean =-0.0046; 95% C| = [-0.016, 0.0037],
p = 0.40), whereas remembered B items were (mean = 0.0082; 95% Cl = [0.0021, 0.015], p = 0.003). Using
binary classifiers trained to discriminate within A or B categories, we again found that forgotten (mean =
0.0075; 95% Cl = [0.00087, 0.016], p = 0.014), but not remembered A items (mean = 0.0027; 95% Cl = [-
0.00086, 0.0061], p = 0.13) were associated with reliable predictive evidence of B, and that remembered
(mean = 0.0084; 95% Cl = [0.0033, 0.013], p = 0.0016), but not forgotten B items (mean = -0.0044; 95% Cl =
[-0.017,0.0048], p = 0.47) were associated with reliable predictive evidence of B.

Together, these results highlight the opposing influence of predictive value on memory for predictive
versus predicted items. Namely, prediction of B (during A) is associated with worse memory for predictive
A items (suggesting interference between the generation of a prediction and encoding of the current item)
but better memory for predicted B items (suggesting that this prediction may potentiate encoding of an
upcoming item).

Discussion

This study demonstrates a trade-off between how well an item is encoded into episodic memory and how
strong of a future prediction it generates based on statistical learning. We first used frequency tagging
to provide neural verification of statistical learning. During a sequence of scene photographs, electrodes
in visual cortex represented pairs of scene categories that reliably followed each other, synchronizing not
only to the individual scenes but also to the boundaries between pairs. Next, we used multivariate pattern
analysis to assess how the paired categories were represented over time. Items from the first category in a
pair elicited a representation of the second category, which grew in strength in advance of the onset of items
from the second category. We refer to the ability of an item to generate this predictive representation as its
“predictive value”. Critically, by relating these representational dynamics to subsequent memory behavior,
we found that forgotten items from the first category triggered reliable predictions during encoding whereas
remembered first items had not.

Our work builds upon suggestive evidence from a prior study that predictive value may influence sub-
sequent memory (Sherman and Turk-Browne, 2020). This prior study included behavioral and fMRI experi-
ments, whereas the current study employed iEEG. Neural measures are an important advance over behav-
ior alone because they can assay predictive representations during passive viewing at encoding. iEEG is
superior to fMRI for this purpose because neural activity is sampled at much greater temporal resolution
and activity reflects instantaneous electrical potentials rather than hemodynamic responses smoothed and
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delayed in time. This provides much greater confidence that the upcoming category was being represented
prior to its appearance and thus was truly predictive. Moreover, the prior study showed a negative rela-
tionship between prediction and memory across participants, whereas the current study established this
relationship within participant. This is also an important advance because an across-participant relation-
ship does not provide strong evidence for the claim that prediction during encoding impairs memory. Such
a relationship could reflect generic individual differences such that, for example, a participant with better
overall memory generates the same weak prediction on both remembered and forgotten trials. In contrast,
in this study we were able to link prediction to successful vs. unsuccessful memory formation across items.
This more sensitive approach yielded other findings not observed in the prior study, including that memory
for B items had an opposite, positive relationship with prediction of B. Taken together, these results pro-
vide mechanisticinsightinto the interaction between predictive value and memory, and speak to theoretical
questions about the representations underlying statistical learning and episodic memory.

Nature of representational changes

Several fMRI studies have shown that statistical and related forms of learning can change neural representa-
tions of associated items throughout the human brain (Schapiro et al., 2012, 2013; Schlichting et al., 2015;
Deuker et al., 2016; Tompary and Davachi, 2017). For example, if exposed to sequential pairs embedded
in a continuous stream of objects (akin to the category pairs in the current study), the two objects in a pair
come to elicit more similar patterns of fMRI activity from before to after learning, when presented on their
own, in the medial temporal lobe cortex and hippocampus (Schapiro et al., 2012). Such integration could
be interpreted as evidence that the representations of the paired items merged into a single “unitized” rep-
resentation of the pair that can be evoked by either item (Fujimichi et al., 2010). Alternatively, the paired
items may remain distinct but become associated, such that either can be reactivated by the other through
spreading activation (Schapiro et al., 2017). A key difference between these accounts is the timing of how
learned representations emerge when one of the items is presented: the merging account predicts that
the (same) unitized representation is evoked immediately by either paired item, whereas the associative
account predicts that the presented item is represented immediately while the paired item is represented
gradually over time through reactivation. These dynamics cannot be distinguished by fMRI because of its
slow temporal resolution, but our iEEG approach may shed light.

On the surface, the results of our frequency tagging analysis may seem to suggest a merged represen-
tation of the category pairs. The reliable peak in coherence at the frequency of two consecutive stimuli may
suggestthatelectrodesinvisual cortex represented the paired categories as a single unit (Batterink and Paller,
2017). However, the results of our pattern similarity analysis are more consistent with an association be-
tween the paired categories. Although we found that both categories in a pair could be represented at
the same time (i.e., predictive B evidence during the A Pre trial and lingering A evidence during the B Post
trial, relative to no such evidence on X trials), these representations were offset in time. The representation
of the A category was robust during both the ON and ISI epochs of the A trial, whereas the representa-
tion of the B category was not reliable during the ON epoch and only emerged during the ISI epoch. Thus,
our results are more consistent with an associative account in visual cortex. It remains possible that the
hippocampus or other brain structures represent statistical regularities through unitized representations.
Moreover, one limitation of our study is that we did not measure representations of individual categories be-
fore and after learning to directly assess representational change. Although we could not directly measure
representational change from before to after learning, we did correlate the category templates measured
after learning. Unitization of paired categories would be reflected in increased pattern similarity among
paired, relative to unpaired and random categories. We did not find reliable evidence of such representa-
tional merging, inconsistent with a unitization account. However, prior studies focused on the unitization of
paired items rather than categories. Thus, if we had found evidence of representational merging of paired
categories in the current study, it would be unclear whether this reflects unitization in the same way or a
qualitatively different kind of representational change.
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Predictive interference on memory encoding

The timecourse of predictive representations also sheds light on the temporal dynamics of the interaction
between episodic memory and statistical learning. When examining the overall effect of prediction, we
found reliable B evidence during the ISI epoch of A, immediately preceding the appearance of B. However,
this resultwas obtained by averaging across all trials, both remembered and forgotten. Thus, itwas possible
that when separated out by subsequent memory, a different pattern would emerge. One possibility is that B
evidence would come online earlier for forgotten items, which might suggest that the observed impairment
in A memory resulted from interference with perceptual processing of A. To the contrary, the difference
in B evidence for remembered vs. forgotten A items was clearest during the ISI after A was removed from
the screen, which suggests that prediction may interfere with later, post-perceptual stages of processing to
impair encoding.

Interestingly, evidence for the current A category was comparable across remembered and forgotten
A items. Thus, in this paradigm, variance in memory was explained solely by prediction of the upcoming
category, not the strength of perceptual processing of the category being encoded (Kuhl et al., 2012) nor
modulation of this processing by prediction (both of which would have affected A evidence). The lack of a
relationship between A evidence and A memory may reflect a tradeoff: category evidence may reflect rep-
resentation of the most diagnostic features of a category, which would enhance memory for these features
while impairing memory for idiosyncratic features of particular exemplars. A related account may explain
why predictive B evidence was positively linked to B memory (Smith et al., 2013; Thavabalasingam et al.,
2016): B evidence during the A ISI may potentiate the diagnostic features of the B category, enhancing the
salience of idiosyncratic features of B when it appears to strengthen episodic memory for B. Future studies
could test these possibilities by using a more continuous measure of memory precision and by testing on
modified items that retain category-diagnostic vs. idiosyncratic features.

Our finding that prediction relates to better memory for predictable B items contrasts with findings
of enhanced encoding for unpredictable/unexpected items (Kim et al., 2014; Greve et al., 2017; Bein et al.,
2021). These seemingly divergent findings are difficult to reconcile because predictions in our study were
never violated: in the Structured condition, the A in each pair was followed deterministically by B; in the
Random condition, although each X was unexpected to some degree they did not violate a learned expecta-
tion. Thus, it is possible that replacing the expected B with another category would have led to even better
memory encoding. That said, one interpretation of our finding of enhanced (predictable) B memory that
would be consistent with a benefit of prediction error for episodic memory could be that features idiosyn-
cratic to a particular B exemplar (needed to later retrieve this specific episodic memory) may have violated a
category-level expectation grounded in the diagnostic (i.e., non-idiosyncratic) features of a category shared
across its exemplars. This question — as well as questions above about how the category-level nature of
the prediction may have affected memory for A — could be informed by future studies examining effects
of item-level prediction on memory.

This work builds on existing theories considering the complex interplay between memory encoding and
memory retrieval. To the extent that prediction from statistical learning can be considered associative
retrieval (Kok and Turk-Browne, 2018; Hindy et al., 2016), our findings converge with the notion that the
brain cycles between mutually exclusive encoding and retrieval states (Hasselmo et al., 2002; Duncan et al.,
2012; Long and Kuhl, 2019; Bein et al., 2020), organized by the hippocampal theta cycle (Kerrén et al., 2018;
Pacheco Estefan et al., 2021). Further, a recent computational model suggests that predictive uncertainty
determines when memories should be encoded or retrieved (Lu et al., 2022). The model accounts for find-
ings that familiar experiences are more likely to evoke retrieval (Patil and Duncan, 2018), and thus may help
to explain why predictions from statistical learning are prioritized over episodic encoding.

Neural source of predictions

The current study sought to decode evidence of visual categories and so focused on electrode contacts in
visual cortex. This adds to a growing literature on predictive signals in visual cortex (De Lange et al., 2018;
Kim et al., 2020; Clarke et al., 2022). Importantly, in our previous fMRI study (Sherman and Turk-Browne,
2020), we found evidence of prediction only in the hippocampus. We interpreted the lack of an effect in
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visual cortex in light of the fact that we were measuring prediction (of B) while other items (A) were be-
ing perceived; thus, if visual cortex preferentially represents on-screen, perceived information, we may not
have been sensitive to a weaker, simultaneous prediction effect. Indeed, other fMRI studies have found pre-
dictions in visual cortex during the absence or omission of perceptual input (Hindy et al., 2016; Clarke et al.,
2022). Using a time-resolved measure like iEEG in the current study provided another solution to this prob-
lem, by allowing us to isolate short ON vs. ISI time periods when there was vs. was not a competing stimulus
present, respectively (which fMRI would have been unable to separate). In fact, we found evidence for pre-
diction during the ISI after the predictive item but not while the predictive item was on the screen. This
increased sensitivity to prediction specifically during the ISI period may have also provided a clean enough
prediction signal to detect a trial-level relationship with memory.

Although we observe these predictive signals in visual cortex, these signals may originate elsewhere in
the brain. A strong candidate is the hippocampus and surrounding medial temporal lobe cortex. In addition
torepresenting predictions (Kok and Turk-Browne, 2018; Sherman and Turk-Browne, 2020; Reddy et al., 2021),
the hippocampus interfaces between perception and memory (Treder et al., 2021) and has been shown
to drive reinstatement of predicted information in visual cortex (Bosch et al., 2014; Tanaka et al., 2014;
Hindy et al., 2016; Danker et al., 2017).

Beyond generating predictions, the hippocampus may also be the nexus of the interaction between
episodic memory and statistical learning, given its fundamental role in both functions (Schapiro et al., 2017).
Indeed, given the necessity of the hippocampus for episodic memory, our study raises questions about how
the representations of perceived and predicted categories in visual cortex are routed into the hippocampus
for encoding. One intriguing possibility is that these representations are prioritized according to biased com-
petition (Desimone, 1998; Hutchinson et al., 2016), leading to preferential routing and subsequent encoding
of predicted, but not perceived, information in the hippocampus. Relatedly, recent work had found that en-
coding vs. retrieval states are associated with distinct patterns of activity in visual cortex (Long and Kuhl,
2021), suggesting that representations in visual regions may be fundamentally shaped by memory state in
the hippocampus.

The patients in the current study had relatively few contacts in the hippocampus and medial temporal
lobe cortex, precluding careful analysis of prediction in these regions and how it relates to visual cortex.
Future studies with a larger cohort of patients and/or high-density hippocampal recordings would be useful
for this purpose. Such studies could also provide a more direct link between statistical learning-based
prediction and encoding/retrieval modes by examining how hippocampal theta phase (Kerrén et al., 2018;
Pacheco Estefan et al., 2021) relates to predictive signals in visual cortex. Likewise, future studies could
disrupt the hippocampus through stimulation to establish its causal role in predictive representations in
visual cortex.

Limitations of the current study

In the current study, we exploited the high signal-to-noise of intracranial recordings in a small sample of
patients. Motivated by the ability to densely sample neural data within this rare population, we focused our
experimental design on optimizing neural measures. This led to a few limitations.

Our primary evidence of statistical learning came from neural rather than behavioral measures, namely
neural entrainment at the pair frequency and category prediction in pattern similarity. We did not have
any direct behavioral measures of statistical learning, such as faster response times for predictable items
during learning (Gémez et al., 2011; Siegelman et al., 2018) or familiarity judgments about regularities after
learning (Fiser and Aslin, 2002; Turk-Browne et al., 2005; Brady and Oliva, 2008). We could not assess sta-
tistical learning behaviorally during the encoding phase because we used passive viewing (to reduce task
complexity for patients) and because the images were presented too rapidly for manual responses (to en-
able neural measures of entrainment). We did not include a separate behavioral test of statistical learning
after the encoding phase because of limited testing time with the patients that required us to prioritize
the neural measures and the behavioral memory test most central to the hypothesis. Future work should
consider relating neural signatures of statistical learning from iEEG to more direct behavioral measures of
statistical learning, as has been done with scalp EEG (Batterink and Paller, 2017) and fMRI (Karuza et al.,
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2013).

Statistical learning was also measured indirectly via performance on the recognition memory test. We
found reduced memory for predictive A items in the episodic memory test, a replication of prior work
(Sherman and Turk-Browne, 2020). This effect provides some evidence of learning because the pairs were
novel and arbitrary and thus A was only predictive (of B) as a result of new learning. Given that the only
difference between A and X was the added predictiveness of A, reduced memory for A relative to X there-
fore must reflect this learning. That said, there are some limitations to this behavioral effect. Specifically, it
was present only in hit rate for A (saying “old” to old exemplars), and not in A’, a measure of sensitivity that
corrects for false alarm rate for A (saying “old” to new exemplars). The lack of an A’ effect resulted from a
trend toward /ower false alarm rates for A than X. Such a result could suggest a criterion shift for A items
(less likely to say “old” in general). However, the prior study (Sherman and Turk-Browne, 2020), which had
more statistical power, did not find a similar trend in false alarm rates; rather, there was a similar trend
across hit rate and A’. Furthermore, the fact that Structured and Random conditions were presented in
separate blocks in the current study (to enable frequency tagging) as opposed to intermixed in the prior
study complicates the interpretation of weaker differences between A and X, as they could be confounded
with time-dependent differences in the patients’ motivation, attention, and/or symptoms. Nevertheless, we
were able to leverage variance in memory within A items of the Structured condition, by relating memory
to trial-by-trial neural prediction.

Lastly, we adopted a “subblock” structure, in which individual exemplars repeated four times before
switching to new exemplars (but holding the category pairs constant). This choice was made to balance
the rapid presentation of stimuli needed for the neural frequency tagging analyses with providing sufficient
exposure to the images so that some would be later remembered. Although we found some evidence that
neural entrainment to the pairs increased across Structured subblocks, there was little evidence of a learn-
ing trajectory in the behavioral or predictive neural measures. It is possible that exemplar repetition in the
subblocks may have allowed learning to asymptote after only one or a few subblocks (Turk-Browne et al.,
2009), eliminating the possibility of finding a more gradual change in these measures across subblocks.
These analyses are further limited by the small number of patients relative to prior work with healthy in-
dividuals that found clearer learning effects in behavior (Sherman and Turk-Browne, 2020). Future studies
could tailor their experimental designs to optimize detection of a learning trajectory, for example by forego-
ing neural entrainment and presenting images once for a longer duration or by introducing more complex
regularities.

Conclusion

In examining the trade-off between prediction and memory encoding, our work suggests a novel theoreti-
cal perspective on why predictive value shapes memory. We argue that because memory is capacity- and
resource-limited, memory systems must prioritize which information to encode. When prior statistical learn-
ing enables useful prediction of an upcoming experience, that prediction takes precedence over encoding.
In this way, encoding is focused adaptively on experiences for which there is room to develop stronger
predictions.
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