
The prevalence and importance of statistical learning in
human cognition and behavior
Brynn E Sherman, Kathryn N Graves and
Nicholas B Turk-Browne

Available online at www.sciencedirect.com

ScienceDirect
Statistical learning, the ability to extract regularities from the

environment over time, has become a topic of burgeoning

interest. Its influence on behavior, spanning infancy to

adulthood, has been demonstrated across a range of tasks,

both those labeled as tests of statistical learning and those from

other learning domains that predated statistical learning

research or that are not typically considered in the context of

that literature. Given this pervasive role in human cognition,

statistical learning has the potential to reconcile seemingly

distinct learning phenomena and may be an under-appreciated

but important contributor to a wide range of human behaviors

that are studied as unrelated processes, such as episodic

memory and spatial navigation.
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Introduction
Although each day brings new experiences, our world

does not present us with a series of novelties. Rather, our

experience is highly repetitive and structured. Over the

past two decades, a subfield of cognitive science has

emerged on how humans acquire this information about

the world via statistical learning. This research has

highlighted that infants, children, adults — and in some

cases non-human animals — possess the remarkable abil-

ity to detect and represent regularities from the environ-

ment in an unsupervised fashion, often without aware-

ness. In this review, we first highlight recent findings

demonstrating not only that humans have the capacity for

statistical learning, but also that these learned regularities
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are relevant for behavior throughout the lifespan — from

acquiring language to forming predictions about upcom-

ing experiences. We then propose that these mechanisms

have behavioral consequences, from facilitating cognitive

processing, to shaping representations, to enabling inte-

gration over past experiences. Finally, we end by moti-

vating future investigations of statistical learning based on

an emerging understanding of its neural foundations,

focusing on its reliance on the hippocampus, a brain

structure conventionally implicated in episodic memory

and spatial navigation.

Mechanisms of statistical learning
Statistical learning is a rapid, efficient means of extracting

regularities from the environment. To this end, it has

often been studied in the context of development, a

period when it is particularly adaptive to quickly learn

about the world. However, statistical learning continues

to operate and play an important role in cognition

throughout the lifespan in adults. Here we review these

two bodies of research on statistical learning.

Research in infants

Early work demonstrated that infants can learn auditory

regularities after minutes of exposure, suggesting that

statistical learning may be a basic building block of

language acquisition (see [1]) (Figure 1a). Indeed, a body

of subsequent work has demonstrated links between

statistical learning and language abilities (see [2]).

These studies demonstrate that statistical learning is

important for finding the boundaries between words,

and also for mapping those words onto objects and con-

cepts (Figure 1c). The latter has been studied under the

banner of cross-situational learning, in which infants learn

mappings between heard words and seen objects by

tracking their co-occurrences [3], forming hypotheses

[4], or a mixture of the two [5].

Advances in head-mounted cameras have provided fur-

ther insight into how visual input changes over develop-

ment and how these real-world statistics inform language

acquisition [6]. Contrary to the apparent visual clutter of

an infant’s world, the true distribution of objects in their

visual input is right-skewed, such that some objects are

encountered with extremely high-frequency [7�]. This

skew potentially reduces the ambiguity between auditory

words and visual referents: the first nouns learned by
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Figure 1
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Statistical learning across modalities. (a) In the auditory domain, the temporal regularities embedded in a stream of spoken syllables are not

immediately apparent on Trial 1. After many exposures (Trial N), the regularities give way to learned boundaries between each triplet of repeated

syllables (colors represent learned ‘words’). (b) In the visual domain, a series of shapes with an underlying pair structure are shown in series. Later

in learning (Trial N), but not initially (Trial 1), this learned regularity enables prediction of the second shape within a pair during presentation of the

first shape (colors denote learned shape pairs). (c) In a cross-modal context, such as learning of object labels, the mapping between auditory

labels and visually presented objects is not immediately discernible. However, repeated co-occurrences of certain labels with certain objects

enable some mappings to be acquired by Trial N (colors represent learned auditory-visual mappings).
infants are those encountered with high prevalence in

egocentric views of daily life [7�].

Early statistical learning work focused on auditory regu-

larities and cross-situational learning studies focused on

audiovisual regularities. However, there is also evidence

that human infants can learn regularities purely within

the visual modality (see [1]) (Figure 1b). Recent work has

highlighted the role of visual statistical learning in action

processing [8], potentially helping an infant learn how to

plan and execute motor behaviors. Beyond action, visual

statistical learning may also play a fundamental role in

helping infants construct object representations [9], both

combining parts into wholes [10] and bridging across

space and time [11]. Open questions remain about how

statistical learning informs various aspects of perceptual

and cognitive development. These are being addressed

by new advances in quantifying the natural statistics of

early environments [6] and in tracking statistical learning

in the developing brain [12]. Future investigations may

additionally benefit from online neural measures that

track learning in the absence of behavioral demands

[13�], a method that thus may be particularly well-suited

to studying infant learning.

Research in adults

Statistical learning is pervasive throughout the lifespan,

from infants to the elderly [14,15]. Nevertheless there is

evidence that statistical learning abilities improve with

age for both visual and auditory regularities [16]. Adults

are adept at acquiring the underlying structure of experi-

ences across a variety of stimuli from different modalities,
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such as musical tones [17], faces [18], city names [19��],
and physical forces [20�]. Indeed, multiple sets of regu-

larities can be extracted at the same time without inter-

ference, such as from hierarchical scenes with temporal

regularities at both global and local scales [21].

Although most studies evaluate statistical learning by

testing with the exact same stimuli and regularities as

during exposure, statistical learning also enables more

abstract, generalized knowledge that can transfer flexibly

across changes at test. This is true in terms of transfer

between space and time, where regularities learned from

spatial configurations can be applied to temporal

sequences [22]; between modalities, where object famil-

iarity acquired via visual statistical learning facilitates

haptic interaction [20�]; and across conceptual levels,

where regularities between visual exemplars allow for

recognition of category structure (e.g. [19��]).

Despite this flexibility, statistical learning remains largely

incidental and automatic. For instance, statistical learning

is not modulated by reward magnitude [23] unless parti-

cipants are explicitly instructed to attend to this informa-

tion [24]. Moreover, unlike many controlled cognitive

processes, statistical learning does not consistently bene-

fit from bilingualism [25,26]. The exact interplay between

flexibility and automaticity in adult statistical learning

remains an active area of investigation [27].

Behavioral consequences of statistical
learning
The adaptive purpose of statistical learning in infancy is

readily apparent — for learning about the structure of an
www.sciencedirect.com
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unknown world. What are the consequences and benefits

for adults? One possibility is that adults are robust statis-

tical learners as a vestige of its importance in develop-

ment. Alternatively, statistical learning may continue to

play an important functional role throughout adulthood.

Here, we highlight some of these adaptive benefits.

Facilitating processes: attention and prediction

Statistical learning can facilitate perceptual processing by

guiding attention. Studies have shown that attention is

automatically drawn to regularities, which can enhance

both the detection of targets at the same location and/or

with the same features (e.g. [28,29]) and the suppression

of distractors [29,30,31]. Attention to regularities facil-

itates further statistical learning and may serve an adap-

tive purpose: regularities denote stable aspects of the

environment which can be relied upon in the future to

generate expectations and scaffold new learning [32].

Indeed, statistical learning has been linked to the ability

to make predictions about upcoming stimuli [33,34],

which in turn can facilitate (see [35]) or alter [36] percep-

tual processing.

Shaping representations: compression and associative

spreading

By linking features that co-occur in space or time, statis-

tical learning may serve to create conjunctive, object-like

representations. Such representational changes have

been inferred from behavioral findings that the percep-

tion [37,38] and value [39,40] of an object can be influ-

enced irresistibly by its learned associations with other

objects and their reward histories. These representational

changes also have behavioral consequences for the per-

ception of numerosity: displays with learned regularities

are judged to contain fewer objects than displays without

regularities [41]. This has been interpreted as evidence

that two stimuli paired via statistical learning are repre-

sented as fewer than two objects. Although unclear how a

distortion of numerosity is adaptive per se, it may reveal an

important role for statistical learning in compressing

inputs from the world to reduce processing load. This

has been suggested in the domain of visual working

memory, where regularities in the co-occurrence of fea-

tures can increase memory capacity [42]. Although more

work is needed to better understand this kind of com-

pression and its impact on behavior, these findings pro-

vide initial evidence that statistical learning may serve a

more general purpose in optimizing cognitive resources.

Integrating over experiences: decision-making and

memory

Regularities not only prompt the formation of objects

and associations, but can also influence decision-mak-

ing. When reasoning in a complex environment, contin-

gencies aggregated across multiple experiences are

more predictive than any individual experience [43].

Acquiring such an internal ‘model’ of the environment
www.sciencedirect.com 
is adaptive for making optimal choices when seeking

reward, as in reinforcement learning (e.g. [44,45]). In

this context, statistical learning may support the incre-

mental tracking of reward value across experiences [46],

including by organizing structured knowledge [47],

guiding navigation strategies [48], and building schemas

[49].

Behavioral implications of statistical learning
in the brain
Exploring how statistical learning influences and interacts

with other cognitive systems, such as attention, memory,

and decision-making, helps to reveal its broad and adap-

tive role in behavior. However, these studies employ a

wide variety of tasks and stimuli, raising the possibility

that there are multiple forms of statistical learning. Here

we ask whether our understanding of how statistical

learning operates in the brain can be used to make novel

behavioral predictions and better characterize the full

range of influences on behavior. We focus specifically

on the hippocampus, as a case study of an important brain

region for statistical learning, highlighting implications

for future research on episodic memory and spatial

navigation.

Each new experience can be encoded distinctly from

similar experiences based on its unique moment in space

and time. Yet, many of our experiences occur within

familiar spatial and temporal contexts, creating a role

for learned regularities in seemingly episodic memories.

This is supported by findings that memory encoding is

sensitive to prediction, a key consequence of statistical

learning. In particular, several studies have suggested that

prediction errors can affect both old [50] and new [51]

memories. Chains of predictions may inform our repre-

sentations of event structure [52], which in turn can

influence both the way we encode unique experiences

and the way we navigate space [53].

Critically, episodic memory and spatial navigation are

known to rely on the hippocampus, but so are some

forms of statistical learning [54,55]. How does the same

brain structure simultaneously acquire regularities and

encode individual memories? A recent neural network

model suggests that the hippocampus may be able to

accommodate the computations of both episodic mem-

ory and statistical learning via different pathways

(Figure 2a) [56��]. Specifically, the trisynaptic pathway

(connecting entorhinal cortex to CA1 via dentate gyrus

and CA3) has high levels of inhibition and sparse

activity patterns, providing the ingredients needed to

encode unique episodic traces of related experiences. In

contrast, the monosynaptic pathway (a direct recurrent

connection between entorhinal cortex and CA1) has

lower inhibition resulting in more activity and greater

overlap of related experiences, enabling statistical

learning.
Current Opinion in Behavioral Sciences 2020, 32:15–20
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Figure 2
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Statistical learning and episodic memory in the hippocampus. (a) The hippocampus contains subfields that support two separate pathways — the

trisynaptic pathway (TSP), where input to CA1 from entorhinal cortex (EC) is mediated by dentate gyrus (DG) and CA3, and the monosynaptic

pathway (MSP), where EC directly projects to CA1. (b) After two similar but distinct trips to the beach, these events (each depicted as a pair of

images encountered in sequence during the trip) will be represented in cortex using partially overlapping neural populations. In the hippocampus,

however, two kinds of representations would arise. The TSP would encode highly distinct representations of each trip due to sparse coding,

minimizing interference and retaining idiosyncratic details in episodic memory. The MSP would encode highly overlapping representations of each

trip, supporting the identification of their regularities and statistical learning. (c) During navigation, episodic encoding of individual locations may

give way to the extraction of underlying spatial patterns, which in turn can guide future navigation to new locations. Although this has previously

been shown in rodents only following a long period of consolidation, the architecture of the hippocampus may enable a rapid, online version of

this process in humans.
Although this model provides a theoretical solution to

how episodic memory and statistical learning occur in

tandem in the hippocampus, it is important to note that

the two pathways are not independent, most obviously

because both terminate in CA1 and output via entorhinal

cortex. This anatomical conflict makes the novel behav-

ioral prediction that there will be competition between

episodic and statistical processing. For example, two

overlapping experiences might be separated into distinct

episodic traces if encoded via the trisynaptic pathway, or

integrated into related, semanticized traces if encoded via

the monosynaptic pathway (Figure 2b). The factors that

influence which hippocampal representation wins out

remain to be determined, as do the behavioral conse-

quences of this competition.

Related questions exist in spatial navigation, which also

depends upon the hippocampus. Just as any experience

can be encoded into an episodic memory or used to

extract regularities with other experiences, spatial navi-

gation can be driven by episodic details of particular
Current Opinion in Behavioral Sciences 2020, 32:15–20 
locations (e.g. a specific trip to a new restaurant) or by

knowledge of regularities aggregated across multiple

bouts of navigation (e.g. a neighborhood that tends to

have good food) [48,57�] (Figure 2c). Future work could

examine how accounting for these two kinds of spatial

learning might help explain complex navigational

behavior.

Conclusions and future directions
Throughout this paper, we have explored the pervasive

role of statistical learning in human cognition and

behavior. We ended with the suggestion, based on a

theory of the hippocampus, that one such role of statis-

tical learning may be to influence how and when

episodic memories are formed. This approach of gener-

ating novel behavioral predictions from an improved

neural understanding holds additional promise because

statistical learning has been linked to several brain

regions beyond the hippocampus. Statistical learning

in these regions varies in timescale and content. Within

minutes to hours, statistical learning has been observed
www.sciencedirect.com
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in inferior frontal and superior temporal cortices for

linguistic input [58,59] and in the striatum for motor

sequences [60] and reward contingencies [61]. From

days to weeks, statistical learning has been linked to

cortical consolidation from the hippocampus to medial

prefrontal cortex [47,48]. Over months and years, statis-

tical learning shapes much of our generalized, semantic

knowledge, from object properties and categories in

anterior temporal cortex [62], to spatial, contextual,

and conceptual schemas in medial prefrontal cortex

[49], to event scripts in posterior medial cortex [63].

This inclusive definition of statistical learning across

timescales implicates several brain systems and content

domains, suggesting a range of possible impacts of

statistical learning on cognition that could be investi-

gated in future studies. The nature of the learning itself

within these different systems, specifically which rule(s)

govern the plasticity of neural representations [64], also

remains to be worked out.
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